Curling 2.0
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14563   Accepted: 6080

Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When
    the stone stands still, you can make it moving by throwing it. You may
    throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You
    cannot throw the stone more than 10 times in a game. If the stone does
    not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under
the rules, we would like to know whether the stone at the start can
reach the goal and, if yes, the minimum number of moves required.

With
the initial configuration shown in Fig. 1, 4 moves are required to
bring the stone from the start to the goal. The route is shown in Fig.
3(a). Notice when the stone reaches the goal, the board configuration
has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The
input is a sequence of datasets. The end of the input is indicated by a
line containing two zeros separated by a space. The number of datasets
never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1

Output

For
each dataset, print a line having a decimal integer indicating the
minimum number of moves along a route from the start to the goal. If
there are no such routes, print -1 instead. Each line should not have
any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1

Source

 
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int map[][];
int n,m;
int sx,sy,ex,ey;
int nex[][]={,,,,,-,-,};
int ans,step; bool judge(int x,int y){
if(x>=&&x<n&&y>=&&y<m&&map[x][y]!=)
return true;
return false;
} void dfs(int x,int y){
if(step>)
return;
for(int i=;i<;i++){
int tx=x+nex[i][];
int ty=y+nex[i][];
bool flag=false;
while(judge(tx,ty)){
flag=true;
if(tx==ex&&ty==ey&&step<ans)
ans=step;
tx+=nex[i][];
ty+=nex[i][];
}
if(map[tx][ty]==&&flag){
step++;
map[tx][ty]=;
dfs(tx-nex[i][],ty-nex[i][]);
step--;
map[tx][ty]=;
} } } int main(){
while(scanf("%d%d",&m,&n)!=EOF){
memset(map,,sizeof(map));
if(n==&&m==)
break;
for(int i=;i<n;i++){
for(int j=;j<m;j++){
scanf("%d",&map[i][j]);
if(map[i][j]==)
sx=i,sy=j;
if(map[i][j]==)
ex=i,ey=j;
}
}
ans=;
step=;
dfs(sx,sy);
if(ans>)
printf("-1\n");
else
printf("%d\n",ans); }
return ;
}

poj3009 Curling 2.0 (DFS按直线算步骤)的更多相关文章

  1. POJ3009——Curling 2.0(DFS)

    Curling 2.0 DescriptionOn Planet MM-21, after their Olympic games this year, curling is getting popu ...

  2. POJ3009 Curling 2.0(DFS)

    迷宫问题求最短路. 略有不同的是假设不碰到石头的话会沿着一个方向一直前进,出界就算输了.碰到石头,前方石头会消失,冰壶停在原地. 把这个当作状态的转移. DFS能够求出其最小操作数. #include ...

  3. POJ-3009 Curling 2.0 (DFS)

    Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But th ...

  4. 【POJ】3009 Curling 2.0 ——DFS

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11432   Accepted: 4831 Desc ...

  5. Curling 2.0(dfs回溯)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15567   Accepted: 6434 Desc ...

  6. poj3009 Curling 2.0(很好的题 DFS)

    https://vjudge.net/problem/POJ-3009 做完这道题,感觉自己对dfs的理解应该又深刻了. 1.一般来说最小步数都用bfs求,但是这题因为状态记录很麻烦,所以可以用dfs ...

  7. POJ3009 Curling 2.0(DFS)

    题目链接. 分析: 本题BFS A不了. 00100 00001 01020 00000 00010 00010 00010 00010 00030 对于这样的数据,本来应当是 5 步,但bfs却 4 ...

  8. Curling 2.0(dfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8795   Accepted: 3692 Description On Pl ...

  9. POJ3009 Curling 2.0

    正式做POJ的第一题,做出来后又看了别人的代码,就又完善了一下,也通过了.参考 http://blog.sina.com.cn/s/blog_4abcd9bc0100phzb.html 改了之后觉得写 ...

随机推荐

  1. linux 命令——20 find(转)

    find是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. exec解释: -exec  参数后面跟的是command ...

  2. Mac终端下使用***

    首先安装proxychains: brew install proxychains-ng 然后创建文件~/.proxychains/proxychains.conf,写入以下内容: strict_ch ...

  3. POJ 1769 Minimizing maximizer (线段树优化dp)

    dp[i = 前i中sorter][j = 将min移动到j位置] = 最短的sorter序列. 对于sorteri只会更新它右边端点r的位置,因此可以把数组改成一维的,dp[r] = min(dp[ ...

  4. Aizu 2301 Sleeping Time(概率,剪枝)

    根据概率公式dfs即可,判断和区间[T-E,T+E]是否有交,控制层数. #include<bits/stdc++.h> using namespace std; int K,R,L; d ...

  5. SSM框架快速搭建

    1.   新建Maven项目 ssm 2.    pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xml ...

  6. angular路由学习笔记

    文章目录 标签routerLink路由传递参数 url中get传值 定义路由 获取参数 配置动态路由 定义路由 获取参数 API js路由跳转 配置动态路由 定义路由 获取参数 get传值 定义路由 ...

  7. RxJava2 方法总结

    RxJava2 方法总结 看了许多讲解RxJava的文章,有些文章讲解的内容是基于第一个版本的,有些文章的讲解是通过比较常用的一些API和基础的概念进行讲解的. 但是每次看到RxJava的类中的几十个 ...

  8. eclipse中关闭java文件后再打开,找不到如何切换可视化编辑器

    http://www.iteye.com/problems/64806 两种方式:   第一种正如楼上的老兄说的.在该java类中,鼠标右击,移动到openWith上 找到jigloo,找不到就在ot ...

  9. C#自减运算符

    一.C#自减运算符(--) 自减运算符(--)是将操作数减1. 1. 前缀自减运算符 前缀自减运算符是“先减1,后使用”.它的运算结果是操作数减1之后的值. 例如: --x;  // 前缀自减运算符 ...

  10. 初尝微信小程序2-Swiper组件、导航栏标题配置

    swiper 滑块视图容器. 很多网页的首页都会有一个滚动的图片模块,比如天猫超市首页,滚动着很多优惠活动的图片,用来介绍优惠内容,以及供用户点击快速跳转到相应页面. Swiper不仅可以滚动图片,也 ...