An array (vector) is a common-place data type, used to hold and describe a collection of elements. These elements can be fetched at runtime by one or more indices (identifying keys). A distinguishing feature of an array compared to a list is that they allow for constant-time random access lookup, compared to the latters sequential access. Resizable arrays allow for an unspecified upper-bound of collection elements at runtime, and are conceptuality similar to a list. These dynamic arrays are more complicated and less used in introduction to its compatriot list, which is dynamic by nature. Using C as the language of implementation this post will guide you through building a simple vector data-structure. The structure will take advantage of a fixed-size array, with a counter invariant that keeps track of how many elements are currently present. If the underlying array becomes exhausted, the addition operation will re-allocate the contents to a larger size, by way of a copy.

The Make File

‘Make’ is a popular utility used throughout software development to build executable artifacts (programs and libraries) from described source code. Through a simple DSL, associations from descriptive short-names (targets) and a series of related commands to execute are made. Running the ‘make’ command executes the first present target, and this must be considered in the design of the file. Below is a sample Makefile which provides the vector project with simple build, debug and clean targets.

CC=gcc
CFLAGS=
RM=rm -rf
OUT=vector all: build build: main.o vector.o
$(CC) $(CFLAGS) -o $(OUT) main.c vector.c
$(RM) *.o debug: CFLAGS+=-DDEBUG_ON
debug: build main.o: main.c vector.h
$(CC) $(CFLAGS) -c main.c vector.o: vector.c vector.h
$(CC) $(CFLAGS) -c vector.c clean:
$(RM) *.o $(OUT)

Looking at the code example above you will notice a few variables which are used to define specific aspects used when running the targets (such as the compiler command and flags used). To keep things modular the compilation of the ‘main’ and ‘vector’ source-code files has been split, with file dependences specific to each target specified after the short-name. The ‘debug’ target appends a macro definition flag which is used to include any debug information present in the source code.

The Header File

Defining a header file allows the programmer to separate specific aspects of the programs source-code into reusable files. These files commonly contain forward declarations of identifiers and functions. This allows a user to include the codes header file in their own work, separating the definition from the implementation. Including a header file produces the same results as copying the full contents into the callers file. Below shows the header file implemented for the vector example.

#ifndef VECTOR_H
#define VECTOR_H #define VECTOR_INIT_CAPACITY 4 #define VECTOR_INIT(vec) vector vec; vector_init(&vec)
#define VECTOR_ADD(vec, item) vector_add(&vec, (void *) item)
#define VECTOR_SET(vec, id, item) vector_set(&vec, id, (void *) item)
#define VECTOR_GET(vec, type, id) (type) vector_get(&vec, id)
#define VECTOR_DELETE(vec, id) vector_delete(&vec, id)
#define VECTOR_TOTAL(vec) vector_total(&vec)
#define VECTOR_FREE(vec) vector_free(&vec) typedef struct vector {
void **items;
int capacity;
int total;
} vector; void vector_init(vector *);
int vector_total(vector *);
static void vector_resize(vector *, int);
void vector_add(vector *, void *);
void vector_set(vector *, int, void *);
void *vector_get(vector *, int);
void vector_delete(vector *, int);
void vector_free(vector *); #endif

We wrap the contents of this file in a definition condition to make sure that even with multiple inclusion between aggregate source code files, only one inclusion is processed in the result. A ‘vector’ type definition is included which provides access to the capacity and total current elements in the collection. Along with this, a ‘items’ variable with a pointer of void pointers is included, allowing us to insert a heterogeneous collection of elements into the vector. The ‘vector_resize’ method is defined to be ‘static’ resulting in successful execution of the function only occurring in the file it is defined in (accessibility control).

The Implementation File

Using the header file definition, the following file is used to implement these methods. As discussed in the previous section ‘void pointers’ are used to reference the collection elements. Void pointers are pointers which point to some arbitrary data that has no specific type. As a consequence you are unable to directly deference a pointer of this type and must first provide a casting type.

#include <stdio.h>
#include <stdlib.h> #include "vector.h" void vector_init(vector *v)
{
v->capacity = VECTOR_INIT_CAPACITY;
v->total = ;
v->items = malloc(sizeof(void *) * v->capacity);
} int vector_total(vector *v)
{
return v->total;
} static void vector_resize(vector *v, int capacity)
{
#ifdef DEBUG_ON
printf("vector_resize: %d to %d\n", v->capacity, capacity);
#endif void **items = realloc(v->items, sizeof(void *) * capacity);
if (items) {
v->items = items;
v->capacity = capacity;
}
} void vector_add(vector *v, void *item)
{
if (v->capacity == v->total)
vector_resize(v, v->capacity * );
v->items[v->total++] = item;
} void vector_set(vector *v, int index, void *item)
{
if (index >= && index < v->total)
v->items[index] = item;
} void *vector_get(vector *v, int index)
{
if (index >= && index < v->total)
return v->items[index];
return NULL;
} void vector_delete(vector *v, int index)
{
if (index < || index >= v->total)
return; v->items[index] = NULL; for (int i = index; i < v->total - ; i++) {
v->items[i] = v->items[i + ];
v->items[i + ] = NULL;
} v->total--; if (v->total > && v->total == v->capacity / )
vector_resize(v, v->capacity / );
} void vector_free(vector *v)
{
free(v->items);
}

Looking at the code example above you will notice that the ‘vector_resize’ function is called if certain conditions are met on addition or deletion. If the current vector capacity has been exhausted when an addition has been requested the size is doubled and the vector contents re-allocated. In a similar fashion, upon deletion, if the vector is a quarter full the contents is reallocated to a vector of half the current size. These conditions for resizing work well in practice to balance memory capacity and computation time required to fulfill each resize.

The Test Case

With all the pieces put in place we are now able to test case the implementation. Below shows an example using the direct functions, adding a few strings (character sequences) to a collection, printing the contents, modifying the contents and then printing it out again. One unfortunate use-case detail that can not be avoided with the use of void pointers is the necessary cast.

#include <stdio.h>
#include <stdlib.h> #include "vector.h" int main(void)
{
int i; vector v;
vector_init(&v); vector_add(&v, "Bonjour");
vector_add(&v, "tout");
vector_add(&v, "le");
vector_add(&v, "monde"); for (i = ; i < vector_total(&v); i++)
printf("%s ", (char *) vector_get(&v, i));
printf("\n"); vector_delete(&v, );
vector_delete(&v, );
vector_delete(&v, ); vector_set(&v, , "Hello");
vector_add(&v, "World"); for (i = ; i < vector_total(&v); i++)
printf("%s ", (char *) vector_get(&v, i));
printf("\n"); vector_free(&v);
}

To simplify the use of the vector implementation the header file defines a few macro functions which can be used in place of the base function calls. Below highlights these definition in practice, removing some of the verbosity present in the previous example.

#include <stdio.h>
#include <stdlib.h> #include "vector.h" int main(void)
{
int i; VECTOR_INIT(v); VECTOR_ADD(v, "Bonjour");
VECTOR_ADD(v, "tout");
VECTOR_ADD(v, "le");
VECTOR_ADD(v, "monde"); for (i = ; i < VECTOR_TOTAL(v); i++)
printf("%s ", VECTOR_GET(v, char*, i));
printf("\n"); VECTOR_DELETE(v, );
VECTOR_DELETE(v, );
VECTOR_DELETE(v, ); VECTOR_SET(v, , "Hello");
VECTOR_ADD(v, "World"); for (i = ; i < VECTOR_TOTAL(v); i++)
printf("%s ", VECTOR_GET(v, char*, i));
printf("\n"); VECTOR_FREE(v);
}

Despite still having to provide a casting data type when retrieving a collection element, the macros clean-up and simplify the process a great deal.

Resources

Implementing a Dynamic Vector (Array) in C(使用c实现动态数组Vector)的更多相关文章

  1. 动态数组 - vector

    #include <iostream> #include <vector> // 头文件 using namespace std; int main() { vector< ...

  2. 【模板】c++动态数组vector

    相信大家都知道$C$++里有一个流弊的$STL$模板库.. 今天我们就要谈一谈这里面的一个容器:动态数组$vector$. $vector$实际上类似于$a[]$这个东西,也就是说它重载了$[]$运算 ...

  3. C++ STL之动态数组vector(⽮量)的使⽤

    写再最前面:摘录于柳神的笔记:   之前C语⾔⾥⾯⽤ int arr[] 定义数组,它的缺点是数组的⻓度不能随⼼所欲的改变,⽽C++⾥⾯有⼀个能完全替代数组的动态数组 vector (有的书⾥⾯把它翻 ...

  4. 越努力越幸运--动态数组vector

    最近回忆山哥写的stl,觉得很好用,也写了一份. 感谢群里的大佬帮忙review,还是很多的问题的. code:https://github.com/HellsingAshen/vector_c.gi ...

  5. C++ vector动态数组

    #include<vector>头文件 vector类称作向量类 百度百科的解释:https://baike.baidu.com/item/vector/3330482 我喜欢把知识点拿出 ...

  6. C++向量 vector动态数组

    需要包含头文件, #include  <vector>    using namespace std; vector 容器与数组相比其优点在于它能够根据需要随时自动调整自身的大小以便容下所 ...

  7. vector:动态数组

    vector是C++标准模板库中的部分内容,中文偶尔译作“容器”,但并不准确.它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库.vector之所以被认为是一个容器,是因为它能够像容器一样存 ...

  8. vector & array

    private static const NUM_LOOPS:int = 15; public function VectorTest():void { var vector:Vector.<i ...

  9. 数组Array和列表集合ArrayList、LinkedList和Vector的区别

    一.ArrayList和Vector的区别 ArrayList与Vector主要从以下方面来说. 1.同步性: Vector是线程安全的,也就是说是同步的,而ArrayList是线程序不安全的,不是同 ...

随机推荐

  1. 第八章 watch监听 86 watch、computed、methods的对比

  2. 帝都之行5day:还是工作上的事

    前两天开始面试找工作,周一整好简历,学历不行也没办法,但还是如实写了,自己看了一下,觉得还凑合,毕竟还是有几年经验的,就开始投了 选了十来个智联推荐的企业,然后把简历设为公开,开始等消息吧…… 投递成 ...

  3. VC++ ID号如何分配

    自动生成的,有默认规则. #define _APS_NEXT_RESOURCE_VALUE 137 //下一个资源ID(插入的一些对话框.图片.图标等) #define _APS_NEXT_COMMA ...

  4. 【JZOJ5605】【NOI2018模拟3.26】Arg

    题目描述 给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. 解题思路 如何求出一个序列的LIS? 对于二分的方法,每次插入一个数,将它放到第一个 ...

  5. 对Webpack 应用的研究-----------------引用

    对大多数 Web 应用来说,页面性能直接影响着流量.这是一个经常为我们所忽视的事实.用户长时间的等待流失的不仅仅是跳出率.转化率,还有对产品的耐心和信赖.很多时候我们没有意识到性能问题,那是因为平常开 ...

  6. File上次文件找不到文件相对绝对路径

    我的问题是因为文件的相对绝对路径上面有中午字符,把上面的中午字符全改为英文或者数字加特殊字符形式都可以

  7. 配置https证书

    官网: https://certbot.eff.org/lets-encrypt/ubuntubionic-nginx ssl安装检测工具: https://www.myssl.cn/tools/ch ...

  8. CDQ解决一些三维偏序的问题

    本来几天前就该记录的东西,硬生生被我拖到了现在,太懒了... 在cdq学习时,二维偏序已经解决了,无非就是先sort使第一维有序,然后再用cdq或者数据结构处理第二维.而三维偏序的时候呢,大佬的做法好 ...

  9. 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)

    Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...

  10. 【CUDA 基础】3.2 理解线程束执行的本质(Part I)

    title: [CUDA 基础]3.2 理解线程束执行的本质(Part I) categories: CUDA Freshman tags: 线程束分化 CUDA分支 toc: true date: ...