BZOJ 3589 动态树 (树链剖分+线段树)
前言
众所周知,90%90\%90%的题目与解法毫无关系。
题意
有一棵有根树,两种操作。一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和。
分析
很容易看出是树链剖分+线段树的题目,唯一的问题就是多条路径可能有交集。那么我们只要把每条路径拆成多个部分,每一部分是某重链上连续的一段,就得到了很多区间。然后排序取并集就能在线段树上操作了。
AC CODE
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int mod = 2147483647;
int n, m;
struct SegmentTree {
int v[MAXN<<2], lz[MAXN<<2], l[MAXN<<2], r[MAXN<<2], len[MAXN<<2];
inline void pushdown(int i) {
if(lz[i]) {
v[i<<1] += lz[i]*len[i<<1], lz[i<<1] += lz[i];
v[i<<1|1] += lz[i]*len[i<<1|1], lz[i<<1|1] += lz[i];
lz[i] = 0;
}
}
void build(int i, int L, int R) {
l[i] = L, r[i] = R, len[i] = R-L+1;
if(L == R) return;
build(i<<1, L, (L+R)>>1);
build(i<<1|1, (L+R)/2+1, R);
}
void Modify(int i, int L, int R, int k) {
if(L <= l[i] && r[i] <= R) { v[i] += k*len[i], lz[i] += k; return; }
pushdown(i);
int mid = (l[i] + r[i]) >> 1;
if(L <= mid) Modify(i<<1, L, R, k);
if(R > mid) Modify(i<<1|1, L, R, k);
v[i] = v[i<<1] + v[i<<1|1];
}
int Query(int i, int L, int R) {
if(L <= l[i] && r[i] <= R) return v[i];
pushdown(i);
int mid = (l[i] + r[i]) >> 1, res = 0;
if(L <= mid) res += Query(i<<1, L, R);
if(R > mid) res += Query(i<<1|1, L, R);
return res;
}
}T;
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt;
inline void add(int x, int y) {
to[++cnt] = y; nxt[cnt] = fir[x]; fir[x] = cnt;
}
int dep[MAXN], top[MAXN], dfn[MAXN], hson[MAXN], sz[MAXN], fa[MAXN];
inline void read(int &num) {
char ch; while((ch=getchar())<'0'||ch>'9');
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
}
struct node {
int l, r;
inline bool operator <(const node &t)const {
return l == t.l ? r > t.r : l < t.l;
}
}a[MAXN], b[MAXN];
int cur;
inline void pre(int x, int y) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
a[++cur] = (node){ dfn[top[x]], dfn[x] };
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x, y);
a[++cur] = (node){ dfn[y], dfn[x] };
}
inline int solve() {
sort(a + 1, a + cur + 1);
int tot = 0, res = 0, l = a[1].l, r = a[1].r;
for(int i = 1; i <= cur; ++i)
if(a[i].r > r) {
if(a[i].l > r+1) b[++tot] = (node){ l, r }, l = a[i].l, r = a[i].r;
else r = a[i].r;
}
b[++tot] = (node){ l, r };
for(int i = 1; i <= tot; ++i)
res = (res + T.Query(1, b[i].l, b[i].r)) & mod;
return res;
}
inline void dfs(int u, int ff) {
dep[u] = dep[fa[u]=ff] + (sz[u]=1);
for(int i = fir[u]; i; i = nxt[i])
if(to[i] != fa[u]) {
dfs(to[i], u), sz[u] += sz[to[i]];
if(sz[to[i]] > sz[hson[u]]) hson[u] = to[i];
}
}
inline void dfs2(int u, int tp) {
top[u] = tp; dfn[u] = ++cur;
if(hson[u]) dfs2(hson[u], tp);
for(int i = fir[u]; i; i = nxt[i])
if(to[i] != fa[u] && to[i] != hson[u])
dfs2(to[i], to[i]);
}
int main () {
read(n);
for(int i = 1, x, y; i < n; ++i)
read(x), read(y), add(x, y), add(y, x);
dfs(1, 0); dfs2(1, 1);
T.build(1, 1, n);
read(m);
int opt, x, y;
while(m--) {
read(opt);
if(!opt) read(x), read(y), T.Modify(1, dfn[x], dfn[x]+sz[x]-1, y);
else {
read(opt); cur = 0;
while(opt--) read(x), read(y), pre(x, y);
printf("%d\n", solve());
}
}
}
UpdUpdUpd
不要问我中间为什么不取模。因为懒。能过就行
EOFEOFEOF
BZOJ 3589 动态树 (树链剖分+线段树)的更多相关文章
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
- 【bzoj5210】最大连通子块和 树链剖分+线段树+可删除堆维护树形动态dp
题目描述 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块和. 其中,一棵子树的最大连通子块和指的是:该子树 ...
- 【bzoj4712】洪水 树链剖分+线段树维护树形动态dp
题目描述 给出一棵树,点有点权.多次增加某个点的点权,并在某一棵子树中询问:选出若干个节点,使得每个叶子节点到根节点的路径上至少有一个节点被选择,求选出的点的点权和的最小值. 输入 输入文件第一行包含 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- bzoj 2157: 旅游【树链剖分+线段树】
裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...
随机推荐
- 【转帖】CRI-O 1.0 正式发布
CRI-O 1.0 正式发布 http://www.sohu.com/a/200141920_465914 CRI-O 出来之后 docker 也就可有可无了 docker创造性的提出了 将依赖关系封 ...
- docker容器端口号、时区修改
一.修改端口号 在docker run创建并运行容器的时候,可以通过-p指定端口映射规则.但是,我们经常会遇到刚开始忘记设置端口映射或者设置错了需要修改.当docker start运行容器后并没有提 ...
- Greenplum 5.21.1 集群安装部署
简单来说GPDB是一个分布式数据库软件,其可以管理和处理分布在多个不同主机上的海量数据.对于GPDB来说,一个DB实例实际上是由多个独立的PostgreSQL实例组成的,它们分布在不同的物理主机上,协 ...
- find程序实现
一个简单的查找字符串匹配 #include <stdio.h> #include <string.h> #define MAXLINE 1000 int getline(cha ...
- Laravel安装和composer安装
下载地址:https://getcomposer.org/download/ 他会自动找到你的php目录,如果没有记得手动修改 一直点下一步,即可. 如果安装不成功,可能是之前安装过composer ...
- 编写python高质量python代码的59个有效方法
第1条:确认自己的python版本 第2条:遵循PEP8的风格 1.空格 对于 占据多行的长表达式来说, 除了首行之外的其余各行都应该在通常的缩进级别上再加4个空格. 每行字符数不应该超过79. 2. ...
- 利用Python进行数据分析_Pandas_数据结构
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21] ...
- Python之并行编程笔记
概述: 非并发: 1 程序由单个步骤序列构成 2 包含独立子任务的程序执行性能低 并发: 1 异步.高效 2 分解子任务.简化流程与逻辑 进程process:1 一个程序的执行实例 2 每个进 ...
- asp.net core-1.在控制台创建ASP.NET Core应用程序
创建asp.net core应用程序,需要先把环境安装好,我这边选的是vs2017 第一步先执行dotnet 我执行dotnet --help可以把所有的命令全部列出来: 红框内就是我们可以用来初始化 ...
- c# asp.net 实现分页(pager)功能
分页PagerHelper辅助类 using System;using System.Web; public class PagerHelper { #region 获取分页的Html代码 /// & ...