Codeforces

思路

去他的DP,暴力积分多好……

首先发现\(l\)没有用,所以不管它。

然后考虑期望的线性性,可以知道答案就是

\[\int_0^1 \left[ \sum_{i=k}^n {n\choose i}(2x(1-x))^i(1-2x(1-x))^{n-i}\right]\mathrm{d}x
\]

我们令

\[y=2x(1-x)
\]

暴力拆开,答案就是

\[\int_0^1 \sum_{i=K}^n {n\choose i} \sum_{j=0}^{n-i} (-1)^j {n-i\choose j}y^{i+j} \mathrm{d} x
\]

也就是

\[\sum_{i=K}^n {n\choose i} \sum_{j=0}^{n-i} (-1)^j {n-i\choose j} 2^{i+j}\sum_{k=0}^{i+j} (-1)^k {i+j\choose k} \frac 1 {i+j+k+1}
\]

后面只和\(i+j\)有关,可以预处理。

然后就可以\(O(n^2)\),然后就做完了……

我才不告诉你我没有换元然后硬生生地推出了\(O(n^4)\)的式子呢

我也不会告诉你我还硬生生地把它优化成了\(O(n^3)\)呢

我更不会告诉你我盯着它一下午没推出来呢

代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 6000
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; ll fac[sz],_fac[sz];
void init(){_fac[0]=fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
ll C(int n,int m){return n>=m&&m>=0?fac[n]*_fac[m]%mod*_fac[n-m]%mod:0;} int n,K;ll L;
ll f[sz],pow2[sz],Inv[sz];
ll ans; int main()
{
file();
read(n,K,L);
init();
rep(i,1,sz-1) pow2[i]=ksm(2,i),Inv[i]=inv(i);
rep(N,1,n) rep(k,0,N) (f[N]+=Inv[N+k+1]*((k&1)?-1ll:1ll)*C(N,k)%mod+mod)%=mod;
rep(i,K,n) rep(j,0,n-i) (ans+=C(n,i)*((j&1)?-1ll:1ll)*C(n-i,j)%mod*pow2[i+j]%mod*f[i+j]%mod+mod)%=mod;
cout<<ans*L%mod;
return 0;
}

其他做法

这里讲一下标程的神仙DP。

考虑现在线段长度为1,那么可以发现在线段上随机丢一个点\(P\),那么\(P\)被\(k\)条线段覆盖的概率就是要求的答案。

于是我们可以发现只有点之间的相对位置对答案有影响,而在线段上的位置就不重要了。

然后概率再转计数,就是要求\(2n+1\)个点,设出\(n\)个左右端点和一个\(P\),使得满足那个性质的方案数。

然后DP:\(f_{i,j,x}\)表示前\(i\)个点,有\(j\)个左端点还没被匹配,\(P\)有没有被放下来,的方案数。

最后考虑互换左右端点、给线段编号,答案就是

\[\frac{f_{2n+1,0,1}n!2^n}{(2n+1)!}
\]

Codeforces 1153F Serval and Bonus Problem [积分,期望]的更多相关文章

  1. @codeforces - 1153F@ Serval and Bonus Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ...

  2. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  3. CF1153F Serval and Bonus Problem FFT

    CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...

  4. CF1153F Serval and Bonus Problem

    Serval and Bonus Problem 1.转化为l=1,最后乘上l 2.对于一个方案,就是随便选择一个点,选在合法区间内的概率 3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/ ...

  5. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  6. Codeforces1153F Serval and Bonus Problem 【组合数】

    题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ...

  7. CF1153 F. Serval and Bonus Problem(dp)

    题意 一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望. 数据范围 \(1 \le k \le n \le 2000, ...

  8. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  9. 【codeforces 442B】 Andrey and Problem

    http://codeforces.com/problemset/problem/442/B (题目链接) 题意 n个人,每个人有p[i]的概率出一道题.问如何选择其中s个人使得这些人正好只出1道题的 ...

随机推荐

  1. 单选按钮(CheckBox)

    import React, { useState, useEffect } from 'react' import PropTypes from 'prop-types' import _ from ...

  2. 匹配script标签及内容js代码的正则表达式

    <script>[\s\S]+?</script>

  3. 算术 HDU - 6715 (莫比乌斯反演)

    大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...

  4. 更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是等比例缩放

    更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是等比例缩放 更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是 ...

  5. hdu1171 灵活的运用背包问题咯。。。 还有!!!! 合理的计算数组的范围!! wa了好多次!

    Problem Description Nowadays, we all know that Computer College is the biggest department in HDU. Bu ...

  6. 利用WkHtmlToPdf,把H5 转成PDF

    工具下载地址: 链接:https://pan.baidu.com/s/1TSq2WWZcvPwuIfPRHST-FA 提取码:wkx8 原理: 通过IIS访问页面,利用WkHtmlToPdf.exe, ...

  7. 转 无损转换Image为Icon

    不可取 var handle = bmp.GetHicon();    //得到图标句柄return Icon.FromHandle(handle); //通过句柄得到图标 可取 /// <su ...

  8. Apollo 与 .net core

    appsettings配置内容 { "Apollo": { "AppId": "netcore", "Env": &qu ...

  9. 关于/var/log/maillog 时间和系统时间不对应的问题 -- 我出现的是日志时间比系统时间慢12个小时

    那么让我们来见证奇迹的时刻吧!! 首先你要看下/etc/localtime的软连接,到哪了 一般就是这块出问题了 检查这里就绝对不会错的 对比图 : 这种情况, 删除/etc/localtime : ...

  10. 《阿里巴巴 Java 开发规约》自动化检测插件安装及体验

    2017 开春之际,有助于提高行业编码规范化水平的<阿里巴巴 Java 开发手册>首次面世.汇聚阿里集团近万名技术精英的经验知识,这套高含金量的手册一经公开,便引起业界普遍关注和学习. 历 ...