POJ2513:Colored Sticks(字典树+欧拉路径+并查集)
http://poj.org/problem?id=2513
Description
Input
Output
Sample Input
blue red
red violet
cyan blue
blue magenta
magenta cyan
Sample Output
Possible
Hint
大致题意:
给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的。
由图论知识可以知道,无向图存在欧拉路的充要条件为:
① 图是连通的;
② 所有节点的度为偶数,或者有且只有两个度为奇数的节点。
分析:欧拉路径问题,求是否有欧拉通路(欧拉回路的概念)
1.定理:无向图G有欧拉通路的充分必要条件是G为连通图,并且G仅有两个奇度结点或者无奇度结点。
(1)当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
(2)当G是无奇度结点的连通图时,G必有欧拉回路。
2.一个有向图D具有欧拉通路,当且仅当D是连通的,且除了两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1. 推论:一个有向图D是欧拉图(具有欧拉回路),当且仅当D是连通的,且所有顶点的出度等于入度。
3.trie树是一种存储名称的普遍方法。
解法:并查集判断是否连通,用trie存储每种颜色。看度是否符合要求。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define N 500002
using namespace std;
typedef struct node
{
int flag;
struct node *next[];
}*Tree,Node;
char a[],b[];
int du[N+],bin[N+],num;
int findx(int x)
{
int r=x;
while(bin[r]!=r)
r=bin[r];
int j=x,k;
while(j!=r)
{
k=bin[j];
bin[j]=r;
j=k;
}
return r;
}
void merge(int x,int y)
{
int fx=findx(x);
int fy=findx(y);
if(fx!=fy)
bin[fy]=fx;
}
void creat(Tree &T)
{
T=(Tree )malloc(sizeof(Node));
T->flag=;
for(int i=; i<; i++)
T->next[i]=NULL;
}
int inseart(Tree &T,char *s)
{
int t,l,flag2=;;
l=strlen(s);
Tree p=T;
for(int i=; i<l; i++)
{
t=s[i]-'a';
if(p->next[t]==NULL)
{
creat(p->next[t]);
flag2=;
}
p=p->next[t];
}
if(flag2==)
{
num++;
p->flag=num;
return p->flag;
}
return p->flag;
}
void delete1(Tree p)
{
for(int i=; i<; i++)
{
if(p->next[i])
{
delete1(p->next[i]);
}
}
free(p);
}
int main()
{
Tree T;
creat(T);
for(int i=; i<=N; i++)
{
bin[i]=i;
du[i]=;
}
num=;
int sum=;
while(scanf("%s%s",a,b)!=EOF)
{
int tx=inseart(T,a);
du[tx]++;
int ty=inseart(T,b);
du[ty]++;
merge(tx,ty);
}
for(int j=; j<=num; j++)
{
if(du[j]%)
sum++;
if(sum>)
{
printf("Impossible\n");
delete1(T);
return ;
}
}
if(sum==) printf("Impossible\n");
else
{
sum=;
//int ss=findx(1);
for(int i=; i<=num; i++)
{
if(i==bin[i])
sum++;//这题有坑,如果什么不输入直接Crl+Z也是输出"Possible"; }
if(sum==||sum==) printf("Possible\n");
else printf("Impossible\n");
}
delete1(T);
return ;
}
解题思路:
可以用图论中欧拉路的知识来解这道题,首先可以把木棒两端看成节点,把木棒看成边,这样相同的颜色就是同一个节点
问题便转化为:
给定一个图,是否存在“一笔画”经过涂中每一点,以及经过每一边一次。
这样就是求图中是否存在欧拉路Euler-Path。
回顾经典的“七桥问题”,相信很多同学马上就明白了什么是 欧拉路 了,这里不多作解释。
由图论知识可以知道,无向图存在欧拉路的充要条件为:
① 图是连通的;
② 所有节点的度为偶数,或者有且只有两个度为奇数的节点。
其中①图的连通性用程序判断比较麻烦,先放一下。
这里先说说②关于度数的判断方法:
|
Blue |
|
Magenta |
|
Violet |
|
Cyan |
|
Red |
节点的度用颜色出现次数来统计,如样例中,蓝色blue出现三次(不管是出度还是入度),那么blue结点的度就为3,同样地,我们也可以通过输入得到其他全部结点的度,于是,我们有:
Blue=3
Red=2
Violet=1
Cyan=2
Magenta=2

用一个一维数组就能记录了,然后分别 模2,就能判断颜色结点的奇偶性
只要奇度数的结点数的个数 = 1 或 >=3 ,即使①图连通,欧拉路也必不存在
但是若 奇度数的结点数的个数 为0或 ==2,那么我们继续进行①图的连通性证明:
证明①图的连通性,使用并查集MergeSet是非常高效的方法。
知识考查点:
1、字典树;
2、欧拉路:其中又考察了判断是否为连通图;
3、并查集 及其优化方法(路径压缩)。
输出:
POSSIBLE: 奇度数结点个数==0 或 ==2 且 图连通
IMPOSSIBLE:奇度数结点个数==1 或 >=3 或 图不连通
POJ2513:Colored Sticks(字典树+欧拉路径+并查集)的更多相关文章
- POJ2513——Colored Sticks(Trie树+欧拉回路+并查集)
Colored Sticks DescriptionYou are given a bunch of wooden sticks. Each endpoint of each stick is col ...
- POJ 2513 Colored Sticks 字典树、并查集、欧拉通路
Description You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some ...
- poj2513 Colored Sticks —— 字典树 + 并查集 + 欧拉回路
题目链接:http://poj.org/problem?id=2513 题解:通过这题了解了字典树.用字典树存储颜色,并给颜色编上序号.这题为典型的欧拉回路问题:将每种颜色当成一个点.首先通过并查集判 ...
- poj 2513 Colored Sticks trie树+欧拉图+并查集
点击打开链接 Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27955 Accepted ...
- Colored Sticks (字典树哈希+并查集+欧拉路)
Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27704 Accepted: 7336 Description You ...
- POJ 2513 Colored Sticks(欧拉回路,字典树,并查集)
题意:给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的. 无向图存在欧拉路的充要条件为: ① 图是连通的: ② 所有节 ...
- poj2513连接木棍(字典树+欧拉回路+并查集)
题目传送门 题目大意:给你一堆木棍,每根木管都有两种颜色,相同颜色的部分可以连接起来,问你这堆木棍可不可以连接成1根. 思路:大致的思路很好想,就是判断欧拉回路的方法(1.联通,2,要么顶点读书全为偶 ...
- POJ-2153Colored Sticks解题报告+欧拉回路,字典树,并查集;
传送门:http://poj.org/problem?id=2513 题意:给你许多木棍,木棍两端都有颜色,问能不能首尾相接,要求颜色相同. 参考:https://www.cnblogs.com/ku ...
- poj 2513 Colored Sticks( 字典树哈希+ 欧拉回路 + 并查集)
题目:http://poj.org/problem?id=2513 参考博客:http://blog.csdn.net/lyy289065406/article/details/6647445 htt ...
随机推荐
- Heap(堆)与Stack(栈)的区别详解
在了解堆与栈之前,我们想来了解下程序的内存分配 一个编译的程序占用的内存分为以下几个部分 : 1.栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等.其 ...
- 30K以上的高薪Java程序员所需技能大汇总
总所周知,Java是目前使用最为广泛的网络编程语言之一. 它具有简单,面向对象,稳定,与平台无关,解释型,多线程,动态等特点. 一般的JAVA程序员或许只需知道一些JAVA的语法结构就可以应付了.但要 ...
- Mysql 指定字段数据排序 以及django的实现
业务场景: mysql 查询 select * from dormitory_applysettleorder order by FIELD(status,40) desc django 实现: or ...
- Phoenix安装批次提交插入更新语句
1 贴一下官方的代码 https://phoenix.apache.org/tuning_guide.html try (Connection conn = DriverManager.getConn ...
- 01_Redis简述
一:关系型数据库和非关系型数据库的区别: 1:关系型数据库(SQL):数据和数据之间,表和字段之间,表和表之间是存在关系的: 优点:数据之间有关系,进行数据的增删改查时非常方便的:关系型数据库有事务操 ...
- TCP协议之网络延时
影响TCP 网络时延的因素硬件速度网络和服务器的负载请求和响应报文的尺寸客户端和服务器之间的距离TCP 协议的技术复杂性TCP协议产生的时延TCP 连接建立握手:TCP 慢启动拥塞控制:数据聚集的 N ...
- vmware 虚拟配置固定IP就无法联网 centos
centos7虚拟机初始运行时ip是动态随机分配的 通过修改etc/sysconfig/network-scripts/ifcfg-ens33文件的配置可以设置固定的ipTYPE=EthernetPR ...
- [易学易懂系列|rustlang语言|零基础|快速入门|(28)|实战5:实现BTC价格转换工具]
[易学易懂系列|rustlang语言|零基础|快速入门|(28)|实战5:实现BTC价格转换工具] 项目实战 实战5:实现BTC价格转换工具 今天我们来开发一个简单的BTC实时价格转换工具. 我们首先 ...
- Prim算法和Kruskal算法介绍
一.Prim算法 普利姆(Prim)算法适用于求解无向图中的最小生成树(Minimum Cost Spanning Tree).下面是Prim算法构造最小生成树的过程图解. ...
- UVA10900 So you want to be a 2n-aire?
So you want to be a 2n-aire? PDF 在一个电视娱乐节目中,你一开始有1元钱.主持人会问你n个问题,每次你听到问题后有两个选择:一是放弃回答该问题,退出游戏,拿走奖金:二是 ...