神经网络MNIST数据集分类tensorboard
今天分享同样数据集的CNN处理方式,同时加上tensorboard,可以看到清晰的结构图,迭代1000次acc收敛到0.992 先放代码,注释比较详细,变量名字看单词就能知道啥意思
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") # 1, 3位是1/ 2, 4位是步长
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # 2, 3是步长
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x_input')
y = tf.placeholder(tf.float32, [None, 10], name='y_input')
with tf.name_scope('x_image'):
# 转变x格式为4D向量[batch, in_height, in_width, in_channels] 通道为1表示黑白
x_image = tf.reshape(x, [-1, 28, 28, 1], name='x_image')
with tf.name_scope('Converlution_1'):
# 初始化第一个卷积层的权重和偏置
with tf.name_scope('Weight_Converlution_1'):
Weight_Converlution_1 = weight_variable([5, 5, 1, 32],
name='Weight_Converlution_1') # 5 * 5的卷积窗口,32个卷积核从1个平面抽取特征
# 生成32个特征图
with tf.name_scope('Biase_Converlution_1'):
Biase_Converlution_1 = bias_variable([32], name='Biase_Converlution_1') # 每个卷积核一个偏置值
# 把x_image和权值向量进行卷积,再加上偏置值,应用于relu激活函数
with tf.name_scope('Converlution2d_1'):
Converlution2d_1 = conv2d(x_image, Weight_Converlution_1) + Biase_Converlution_1
with tf.name_scope('ReLu_1'):
ReLu_Converlution_l = tf.nn.relu(Converlution2d_1)
with tf.name_scope('Pool_1'):
Pooling_1 = max_pool_2x2(ReLu_Converlution_l) # max-pooling
with tf.name_scope('Converlution_2'):
# 初始化第二个卷积层的权重和偏置
with tf.name_scope('Weight_Converlution_2'):
Weight_Converlution_2 = weight_variable([5, 5, 32, 64],
name='Weight_Converlution_2') # 5 * 5的卷积窗口,64个卷积核从32个平面抽取特征
# 生成64个特征图
with tf.name_scope('Biase_Converlution_2'):
Biase_Converlution_2 = bias_variable([64], name='Biase_Converlution_2')
with tf.name_scope('Cov2d_2'):
Converlution2d_2 = conv2d(Pooling_1, Weight_Converlution_2) + Biase_Converlution_2
with tf.name_scope('ReLu_2'):
ReLu_Converlution_2 = tf.nn.relu(Converlution2d_2)
with tf.name_scope('Pool_2'):
Pooling_2 = max_pool_2x2(ReLu_Converlution_2)
# 初始化第一个全连接层
with tf.name_scope('Fully_Connected_L1'):
with tf.name_scope('Weight_Fully_Connected_L1'):
Weight_Fully_Connected_L1 = weight_variable([7 * 7 * 64, 1024],
name='Weight_Fully_Connected_L1') # 上一层有7*7*64个神经元,全连接层有1024个神经元
with tf.name_scope('Biase_Fully_Connected_L1'):
Biase_Fully_Connected_L1 = bias_variable([1024], name='Biase_Fully_Connected_L1')
# 把池化层2的输出扁平化为1维
with tf.name_scope('Pooling_2_to_Flat'):
Pooling_2_to_Flat = tf.reshape(Pooling_2, [-1, 7 * 7 * 64], name='Pooling_2_to_Flat') # -1表示任意值
with tf.name_scope('Wx_Plus_B1'):
Wx_Plus_B1 = tf.matmul(Pooling_2_to_Flat, Weight_Fully_Connected_L1) + Biase_Fully_Connected_L1
with tf.name_scope('ReLu_Fully_Connected_L1'):
ReLu_Fully_Connected_L1 = tf.nn.relu(Wx_Plus_B1)
# Keep——Prob
with tf.name_scope('keep_prob'):
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
with tf.name_scope('Fully_Connected_L1_Drop'):
Fully_Connected_L1_Drop = tf.nn.dropout(ReLu_Fully_Connected_L1, keep_prob, name='Fully_Connected_L1_Drop')
# 初始化第二个全连接层
with tf.name_scope('Fully_Connected_L2'):
with tf.name_scope('Weight_Fully_Connected_L2'):
Weight_Fully_Connected_L2 = weight_variable([1024, 10], name='Weight_Fully_Connected_L2')
with tf.name_scope('Biase_Fully_Connected_L2'):
Biase_Fully_Connected_L2 = bias_variable([10], name='Biase_Fully_Connected_L1')
with tf.name_scope('Wx_Plus_B2'):
Wx_Plus_B2 = tf.matmul(Fully_Connected_L1_Drop, Weight_Fully_Connected_L2) + Biase_Fully_Connected_L2
with tf.name_scope('SoftMax'):
prediction = tf.nn.softmax(Wx_Plus_B2)
# 交叉熵函数
with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,
logits=prediction), name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy) # 显示标量信息 tf.summary.scalar(tags, values, collections=None, name=None)
# AdamOptimizer优化器
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# 合并所有summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter('logs/train', sess.graph)
test_writer = tf.summary.FileWriter('logs/test', sess.graph)
for i in range(101):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 0.5})
# 记录训练集计算的参数
summary = sess.run(merged, feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 1})
train_writer.add_summary(summary, i)
# 记录训练集计算的参数
batch_xs, batch_ys = mnist.test.next_batch(batch_size)
summary = sess.run(merged, feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 1.0})
test_writer.add_summary(summary, i)
test_acc = sess.run(accuracy, feed_dict={x: mnist.test.images,
y: mnist.test.labels,
keep_prob: 1.0})
train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images[:10000],
y: mnist.train.labels[:10000],
keep_prob: 1.0})
print("Iter " + str(i) +
", Testing Accuracy " + str(test_acc) +
", Training Accuracy " + str(train_acc))
神经网络MNIST数据集分类tensorboard的更多相关文章
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
- 3.keras-简单实现Mnist数据集分类
keras-简单实现Mnist数据集分类 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.util ...
- 6.keras-基于CNN网络的Mnist数据集分类
keras-基于CNN网络的Mnist数据集分类 1.数据的载入和预处理 import numpy as np from keras.datasets import mnist from keras. ...
- 深度学习(一)之MNIST数据集分类
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率.(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 py ...
- Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...
- 卷积神经网络应用于MNIST数据集分类
先贴代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = inpu ...
- MNIST数据集分类简单版本
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = ...
- 6.MNIST数据集分类简单版本
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = i ...
- MNIST数据集
一.MNIST数据集分类简单版本 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data # ...
随机推荐
- 【VS开发】MFC多显示器适配显示设置
由于工程需要在多个显示器上显示不同类容,故查找了一些资料来满足这个功能.在VC中分为三步来操作:检测显示器个数:读取屏幕分辨率和其他参数:设置程序的显示坐标. 第一步:检测屏幕个数 网上查找到的通用方 ...
- QT笔记--组合框
1 数据项 (1)位置 index 第一项位0 (2)文本text 这一项的显示值 (3) 关联数据,每一项可以关联一个数据比如整数或者文本类型数据 2 手工添加项 (1)additem:新数据项附加 ...
- [hdu 1062] Text Reverse | STL-stack
原题 题目大意: t组数据,每组为一行,遇到空格时讲前面的单词反转输出. 题解: 显然的栈题,遇到空格时将当前栈输出清空即可 #include<cstdio> #include<st ...
- spring boot 初始
前言 与时俱进是每一个程序员都应该有的意识,当一个Java程序员在当代步遍布的时候,你就行该想到我能多学点什么.可观的是后端的框架是稳定的,它们能够维持更久的时间在应用中,而不用担心技术的更新换代.但 ...
- CF1051D Bicolorings
题目描述 咳咳,懒得复制了上面是两张图:) 解题思路 这题是一道很好的题,感觉之前做过,一开始手推状态找规律,可以用状压但是没想到 借鉴了一下大佬的dp modify数组用以累加新增的状态数 dp数组 ...
- c++基础(五)——关联容器
1.关联容器 关联容器中的元素时按照关键字来保存和访问的,与之相对的,顺序容器中的元素时按它们在容器中的位置来顺序保存和访问的.两个主要关联容器是 map 和 set.标准库提供了8个关联容器,这8个 ...
- stm32F103片上串口USART1通信实验
硬件说明:如原理图所示, 103的PA10 PA11分别接CP2102usb转串口芯片的TXD RXD引脚.CP2102芯片是将串口和电脑USB接口进行了转接,方便应用灵活. 片上串口驱动代码如下. ...
- go条件变量的使用和原理
场景 最近写代码时碰到一个场景, 需要使用 map[int]struct{} 结构来存储task, map的key是task的id,随时可以增减.因为的确除了看书,基本上没使用过条件变量所以后面过了一 ...
- AX 2012 model应用
说句实话,AX2012 model真心不好用,当你开发好,把Model到入到客户环境时, 要防止有冲突,假如出现冲突的话,还必须去删除另外一个Model里面冲突的代码,真心麻烦. 下面给一个ax 导入 ...
- vscode 连接远程服务器 sftp
1.在vscode 应用商店搜索 sftp 下载安装 2.ctrl+shift+p 搜索sftp:config 生成sftp.json 3.配置你的服务器信息{ "name": & ...