题目

细节比较多的二分+跟LCA倍增差不多的思想

首先有这样一个贪心思路,深度越低的检查点越好,而最长时间和深度具有单调性,即给定时间越长,每个军队能向更浅的地方放置检查点。因此可以考虑二分时间,然后判断军队是否可以放置在控制疫情的地方。

但是有的军队需要先满足自己当前所在的节点,然后此节点如果有多个军队,其他军队跳到1节点,再跳到1节点的其他子树,这里又有一个贪心策略,就是每个军队跳到1的剩余时间:二分的当前时间减去到1节点的距离越大,就要跳到1的另一个子树里据1最远的点,这样才能更好地使得控制疫情。

#include <bits/stdc++.h>
#define N 1001001
using namespace std;
struct edg {
int to, nex, len;
}e[N];
struct tem {
int id, len;
}a[N], b[N];
int n, m, cnt, lin[N], vis[N], vis2[N], army[N], dep[N], fa[N][19], dis[N][19];//fa[i][j]表示军队向上跳j次所到达的位置,dis表示此时所用的时间。
//vis表示该点包括的叶子节点是否被完全覆盖
bool cmp(tem x, tem y)
{
return x.len < y.len;
}
inline void add(int f, int t, int l)
{
e[++cnt].len = l;
e[cnt].to = t;
e[cnt].nex = lin[f];
lin[f] = cnt;
}
void dfs(int now, int f)
{
fa[now][0] = f;
dep[now] = dep[f] + 1;
for (int i = lin[now]; i; i = e[i].nex)
{
int to = e[i].to;
if (to == f) continue;
dis[to][0] = e[i].len;
dfs(to, now);
}
}
void bF(int now)//判断该点的所有叶子节点是否全都被覆盖
{
int b1 = 1, b2 = 0;
if (vis[now]) return;
for (int i = lin[now]; i; i = e[i].nex)
{
int to = e[i].to;
if (to == fa[now][0])
continue;
b2 = 1;
bF(to);
if (!vis[to])
b1 = 0;
}
if (b1 && b2 && now != 1)
vis[now] = 1;
}
bool check(int mid)//使每个军队都尽可能的往上跳,直到距离比mid大才停止。
{
memset(vis, 0, sizeof(vis));
memset(vis2, 0, sizeof(vis2));
int tnt1 = 0, tnt2 = 0;
for (int i = 1; i <= m; i++)
{
int u = army[i], dn = 0;
for (int j = 18; j >= 0; j--) if (dn + dis[u][j] <= mid && fa[u][j] != 0) dn += dis[u][j], u = fa[u][j];
if (u != 1)//如果此点不为1说明此点可以被覆盖。
vis[u] = 1;
else
{
a[++tnt1].len = mid - dn;
int u2 = army[i];
for (int j = 18; j >= 0; j--) if (fa[u2][j] > 1) u2 = fa[u2][j];
a[tnt1].id = u2;
}
}
bF(1);
for (int i = lin[1]; i; i = e[i].nex)//枚举深度为2的点
{
int to = e[i].to;
if (vis[to]) continue;//找到没有完全覆盖完的to; 然后加以覆盖。 选一定要选深度最浅的,所以选择深度为2的,这样选择一定是最优解。
b[++tnt2].id = to, b[tnt2].len = e[i].len;
}
sort(a + 1, a + 1 + tnt1, cmp);//a的len是剩余的时间
sort(b + 1, b + 1 + tnt2, cmp);//b的len是需要的时间, 他们的时间相加
int j = 1;
for (int i = 1; i <= tnt1; i++)
{
if (!vis[a[i].id]) vis[a[i].id] = 1;//先把此点给覆盖了。
else if (a[i].len >= b[j].len) vis[b[j].id] = 1;
while (vis[b[j].id] && j <= tnt2) j++;
}
if (j > tnt2)
return 1;
else
return 0;
}
inline void init()
{
scanf("%d", &n);
for (int i = 1, u, v, w; i < n; i++)
{
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
add(v, u, w);
}
scanf("%d", &m);
for (int i = 1; i <= m; i++)
scanf("%d", &army[i]);
dfs(1, 0);
for (int j = 1; j <= 18; j++)
for (int i = 1; i <= n; i++)
{
fa[i][j] = fa[fa[i][j - 1]][j - 1];
dis[i][j] = dis[i][j - 1] + dis[fa[i][j - 1]][j - 1];//dis[i][j]是i向上跳j步所走的路径长度,此叶子节点的意思是最深的节点
}
}
int main()
{
init();
int ans, l = 0, r = 70000000;
while (l <= r)
{
int mid = (l + r) >> 1;
if (check(mid))
ans = mid, r = mid - 1;
else
l = mid + 1;
}
printf("%d", ans);
return 0;
}

洛谷P1084 疫情控制的更多相关文章

  1. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

  2. [NOIP2012] 提高组 洛谷P1084 疫情控制

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

  3. NOIP2012 洛谷P1084 疫情控制

    Description: H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情 ...

  4. 洛谷 P1084 疫情控制 —— 二分+码力

    题目:https://www.luogu.org/problemnew/show/P1084 5个月前曾经写过一次,某个上学日的深夜,精疲力竭后只有区区10分,从此没管... #include< ...

  5. 洛谷P1084 疫情控制 [noip2012] 贪心+树论+二分答案 (还有个小bugQAQ

    正解:贪心+倍增+二分答案 解题报告: 正好想做noip的题目然后又想落实学长之前讲的题?于是就找上了这题 其实之前做过,70,然后实在细节太多太复杂就不了了之,现在再看一遍感觉又一脸懵了... 从标 ...

  6. 2018.09.26洛谷P1084 疫情控制(二分+倍增)

    传送门 好题啊. 题目要求的最大值最小,看到这里自然想到要二分答案. 关键在于怎么检验. 显然对于每个点向根走比向叶节点更优. 因此我们二分答案之后,用倍增将每个点都向上跳到跳不动为止. 这时我们ch ...

  7. 洛谷P1084 疫情控制(贪心+倍增)

    这个题以前写过一遍,现在再来写,感觉以前感觉特别不好写的细节现在好些多了,还是有进步吧. 这个题的核心思想就是贪心+二分.因为要求最小时间,直接来求问题将会变得十分麻烦,但是如果转换为二分答案来判断可 ...

  8. 洛谷P1084 [NOIP2012提高组Day2T3]疫情控制

    P1084 疫情控制 题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控 ...

  9. NOIP2012 D2 T3 疫情控制 洛谷P1084

    题目链接:https://www.luogu.org/problemnew/show/P1084 算法:倍增,二分答案,贪心 + 瞎搞.. 背景:上学长的数论课啥也听不懂,于是前去提高组找安慰.不巧碰 ...

随机推荐

  1. 2019 乐游网络java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.乐游网络等公司offer,岗位是Java后端开发,因为发展原因最终选择去了乐游网络,入职一年时间了,也成为了面 ...

  2. selenium firefox 内存 速度优化

    selenium firefox 内存 速度优化 2 23 profile = webdriver.FirefoxProfile() 2 24 profile.set_preference(" ...

  3. Calendar类set方法中的坑

    最近写了一个支付宝微信对账报表,发现系统金额比支付宝微信的少好多,左查右查发现是追缴金额没统计到,再一查发现月结束日期为2019-09-31,9月咋会有31,为啥呢就追缴金额不行呢,因为其他类型用TI ...

  4. 【转载】C#通过Remove方法移除DataTable中的某一列数据

    在C#中的Datatable数据变量的操作过程中,有时候我们需要移除当前DataTable变量中的某一列的数据,此时我们就需要使用到DataTable变量内部的Columns属性变量的Remove方法 ...

  5. Java 初识

    一.Java 简介 1.什么是 Java Java 语言是美国 Sun 公司(Stanford University Network),在1995年推出的高级的编程语言,所谓编程语言,是计算机的语言, ...

  6. HTML5 表单新增内容

    一.H5 新增控件 1.datalist 元素 datalist 标签定义选项列表,请与 input 元素配合使用该元素.可为输入框提供一个可选的列表,可以直接选择列表项,也可以不选择列表中的项,自行 ...

  7. C# 7可以在.NET Framework 4上运行吗?

    https://stackoverflow.com/questions/42482520/does-c-sharp-7-0-work-for-net-4-5 To sum up: All of C# ...

  8. Hive之累计报表生成

    Hive之累计报表生成 1. 原始数据 u01 2019/1/21 5u02 2019/1/23 6u03 2019/1/22 8u04 2019/1/20 3u01 2019/1/23 6u01 2 ...

  9. Appium的测试简单流程

    1.环境的搭建:jdk,SDK,appium,手机模拟器(夜神模拟器) 2.appium的运作流程图: 图中的流程步骤简单来说是: 1.测试脚本写入appium: 2.appium创建连接,将脚本利用 ...

  10. 浅谈Python设计模式 - 享元模式

    声明:本系列文章主要参考<精通Python设计模式>一书,并且参考一些资料,结合自己的一些看法来总结而来. 享元模式: 享元模式是一种用于解决资源和性能压力时会使用到的设计模式,它的核心思 ...