Compute solution of AX=b (X=Xp+Xn)

rank r

r=m solutions exist

r=n solutions unique

 


example:

若想方程有解,b1,b2,b3需要满足什么条件? 观察矩阵可知,第三行是前两行的和,所以b1+b2=b3

Solvability Condition on b:

Ax=b is solvable when b is in C (A)

If a combination of Rows of A gives zero row, then the same combination of entries of b must give 0

假设,则上述矩阵变为:

To find complete solution to AX=b:

1.Xp (particular): set all free variables to zero, solve AX=b for pivot variable

此例中,X2=0,X4=0

2.Xn(nullspace) 上一节已经解出

3.X(complete)=Xp+Xn

以上操作可解释为:

 


m by n matrix A of rank r(r<=m,r<=n)

Full column of rank(r=n):

所有列均有主元; no free variables;  N(A)=zero vector; solution to AX=b is X=Xp which means if solution exists then the solution is unique(0 or 1 solution)

这种情况实际就是,除zero组合之外,列之间的线性组合无法产生零列

Full row of rank(r=m):

所有行均有主元; no zero rows; can solve AX=b for every b; left with n-r(n-m) free variables

Full rank(r=m=n):

N(A)=zero vector; R(行最简形)=I(单位矩阵)

 

summary:

矩阵的秩决定了方程组解的数目

Linear Algebra lecture8 note的更多相关文章

  1. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  2. Linear Algebra lecture9 note

    Linear independence Spanning a space Basis and dimension 以上概念都是针对a bunch of vectors, 不是矩阵里的概念   Supp ...

  3. Linear Algebra lecture10 note

    Four fundamental subspaces( for matrix A)   if A is m by n matrix: Column space  C(A) in Rm (列空间在m维实 ...

  4. Linear Algebra lecture7 note

    Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R   rank o ...

  5. Linear Algebra lecture6 note

    Vector spaces and subspaces Column space of A solving Ax=b Null space of A   Vector space requiremen ...

  6. Linear Algebra Lecture5 note

    Section 2.7     PA=LU and Section 3.1   Vector Spaces and Subspaces   Transpose(转置) example: 特殊情况,对称 ...

  7. Linear Algebra lecture4 note

    Inverse of AB,A^(A的转置) Product of elimination matrices  A=LU (no row exchanges)   Inverse of AB,A^(A ...

  8. Linear Algebra lecture3 note

    Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A   Matrix multiplication ...

  9. Codeforces Gym101502 B.Linear Algebra Test-STL(map)

    B. Linear Algebra Test   time limit per test 3.0 s memory limit per test 256 MB input standard input ...

随机推荐

  1. EF的增删改查

    //获取分组信息        public List<UserGroupLogSys> GetUserGroupLogSyslist(int pageIndex, int pageSiz ...

  2. Sprint 2(第一天)

    Sprint 2计划会议: 目标: 1.实现用户模块的权限控制,能够进行用户登录的功能 2.对菜单模块实现增加菜单列表详情,修改菜单列表详情,删除菜单列表详情,查询菜单列表详情的功能 3.实现菜品分类 ...

  3. mvc 导入,导出excel

    最近主要做导入excel 在网上查询了代码 public FileResult DownLoadExcelJiZuChaXunGenRenXiaoFeiJiLu() { DataTable dt = ...

  4. kafka 订单应用需求

    kafka的介绍就不说了,网上会找到一大堆. 为了公司做报表需要对卡券订单的销售情况做总结,所以每次下单的时候都要给卡券活动模块传递一次消息,并把订单的信息发送给活动,活动做相应的数据操作,因为数据量 ...

  5. Java和eclipse常用操作

    eclipse: ctrl+F10 显示行号 ctrl+shift+F 自动对齐 ctrl+/ 注释 java: jar包: Manifest-Version - 指定清单文件的版本号 Main-Cl ...

  6. Java Swing 第01记 Hello Word

    首先来一个Java Swing的HelloWord程序. package cn.java.swing.chapter03; import javax.swing.JButton; import jav ...

  7. 【C】二级指针探秘 & 星号的两种用法(1.与基本类型结合形成另一种类型,比如与int结合形成int* 2.取值操作)

    1)问题:二级指针到底是什么?怎么用的?怎么存放的? #include <stdio.h> #define TEST_ADDR 0x12FF40 void main() { int a = ...

  8. word常用操作

    [Word2003文档添加个行号] 参考:http://jingyan.baidu.com/article/e9fb46e1ca1d3c7520f7666f.html#333225-tsina-1-5 ...

  9. Excel常用操作

    [对Excel工作表,按某一列数据进行排序] 选中这些数据,在菜单栏上点"数据 - 排序",在弹出的窗口中的主要关键字里选择这一列,按升序或降序,那么其它的数据也会跟着它一一对应变 ...

  10. Ubuntu 16.04 64位安装insight 6.8

    1. apt-get install insight已经不管用. 2. 编译源码死都有问题. 3. 拜拜,用KDBG.