前面一篇讲的单纯形方法的实现,但程序输入的必须是已经有初始基本可行解的单纯形表。

但实际问题中很少有现成的基本可行解,比如以下这个问题:

min f(x) = –3x1 +x2 + x3

s.t. x1 – 2x2 + x3 + x4=11

      -4x1 + x2 + 2x3 - x5=3

      -2x1+x3=1

      xj>=0 , j=1,2,3,4,5

写成单纯形表就是

  x1 x2 x3 x4 x5 b
f 3 -1 -1 0 0 0
  1 -2 1 1 0 11
  -4 1 2 0 -1 3
  -2 0 1 0 0 1

很难找到秩为3的基阵,更不用说直接出现3阶单位阵了。在实际问题中,尤其是约束条件变多时,找到基阵甚至是判定A是否满秩都十分困难,因此在程序中引入大M法(Big M Method)来获得初始的基本可行解,这样我们能处理的问题就更加多样化了。

上篇已经说过,对于m*n的矩阵A来说,找到一个m*m 的满秩方阵就能得到基本可行解,但是在这么多列向量中怎样挑出m个线性无关的向量来组成一个满秩方阵呢?如果找起来麻烦的话,不如直接添加一个m阶单位阵来的方便!

大M法

大M法又称惩罚法,它是在目标函数中添加m个人工变量M*x(M是一个任意大的正数),同时在A矩阵中添加一个m阶单位矩阵。

这样一来新的A矩阵中就有了一个m*m满秩方阵,满足单纯形法求解的初始要求,但是若要得到最小值f(x),新添加的人工变量的值必然是0的,因为M可以是很大的数,如果Xn+1不为0,f(x)可能会很大,如果无法做到令人工变量取0值,那么原问题就无可行解。

需要注意的是,添加完人工变量之后,人工变量构成一组可行解的基变量,但单纯形初始矩阵要求基变量对应的检验数为0,故需要做行变换把基变量对应的检验数置0。

例如,本文开始引入的问题经过添加人工变量后变为

  x1 x2 x3 x4 x5 x6 x7 x8 b
f 3 -1 -1 0 0 -M -M -M 0
x6 1 -2 1 1 0 1 0 0 11
x7 -4 1 2 0 -1 0 1 0 3
x8 -2 0 1 0 0 0 0 1 1

再进行行变换把基变量x6,x7,x8对应的检验数置0,得到:

  x1 x2 x3 x4 x5 x6 x7 x8 b
f 3-5M -1-M -1+4M 0 0 0 0 0 0
x6 1 -2 1 1 0 1 0 0 11
x7 -4 1 2 0 -1 0 1 0 3
x8 -2 0 1 0 0 0 0 1 1

进行完这步之后,就回到了单纯形法求解的基本问题,利用原来的算法继续计算就好了。

Matlab实现

BigM.m

function [ x,y ] = BigM( f,A,b )
%输入f是检验数的数组,1*n维
%输入A是约束矩阵, m*n维
%输入b是约束向量, 1*m维
%输出x是解向量
%输出y是最优解
%判断输入维数是否相符
%做初始单纯形表,加入M变量
[n,m]=size(A);%n行m列
M=10000;
S=[f -1*M*ones(1,n) 0;
A eye(n) b'];
format rat %将结果以分数表示
[n,m]=size(S);
%将人工变量的检验数置零
for k=1:n-1
S(1,:)=S(1,:)+S(k+1,:)*M;
end
%判断检验数 r<=0
r=find(S(1,1:m-1)>0);
len=length(r);
flag=0;
%有大于0的检验数则进入循环
while(len)
%检查非负检验数所对列向量元素是否都小于等于0
for k=1:length(r)
d=find(S(:,r(k))>0);
if(length(d)+1==2)
error('无最优解!!!')
%break;
end
end
%找到检验数中最大值
[Rk,j]=max(S(1,1:m-1));
%最大值所在列比值为正数且最小值br/a_rk
br=S(2:n,m)./S(2:n,j);
%把比值中的负数都变无穷
for p=1:length(br)
if(br(p)<0)br(p)=Inf;
end
end
[h,i]=min(br);%列向量比值最小值
% i+1为转轴元行号(在S中),j为转轴元列号
i=i+1;
%进行换基,转轴元置1
S(i,:)=S(i,:)./S(i,j);
%转轴元所在列其他元素都置0
for k=1:n
if(k~=i)
S(k,:)=S(k,:)-S(i,:)*S(k,j);
end
end
%判断检验数 r<=0
r=find(S(1,1:m-1)>0);
len=length(r);
% %调试用,控制循环步数
% if(len>0)flag=flag+1;end
% if(flag==2)break;end
% S
end
%检验数全部非正,找到最优解
%非基变量置0
x=zeros(1,m-1);
for i=1:m-1
%找到基变量
j=find(S(:,i)==1);%每列中1的个数
k=find(S(:,i)==0);%每列中0的个数
if((length(j)+1==2)&&(length(k)+1==n))
%i为基本元列号,j是行号
x(i)=S(j,m);
end
end
y=S(1,m);%最优解
S
end

测试程序:

f=[3 -1 -1 0 0];
A=[1 -2 1 1 0;
-4 1 2 0 -1;
-2 0 1 0 0 ];
b=[11 3 1 ];
[x,y]=BigM(f,A,b)
f=[5 2 3 -1];
A=[1 2 3 0 ;
2 1 5 0 ;
1 2 4 1 ];
b=[15 20 26];
[x,y]=BigM(f,A,b)
f=[5 10 0 0 0 ];
A=[1/14 1/7 1 0 0;
1/7 1/12 0 1 0;
1 1 0 0 1 ];
b=[1 1 8];
[x,y]=BigM(f,A,b)
[x,y]=Simplex(f,A,b)

计算结果:

大M法(Big M Method)的更多相关文章

  1. 自适应阈值二值化之最大类间方差法(大津法,OTSU)

    最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...

  2. 大津法---OTSU算法

    简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景 ...

  3. 自适应阈值分割—大津法(OTSU算法)C++实现

    大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和 ...

  4. 大O法时间复杂度计算

    困惑的点——log,如何计算得出? ① 上限:用来表示该算法可能有的最高增长率. ② 大O表示法:如果某种算法的增长率上限(最差情况下)是f(n),那么说这种算法“在O(f(n))中”.n为输入规模. ...

  5. OSTU大津法图像分割

    OSTU图像分割 最大类间方差法,也成大津法OSTU,它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分 ...

  6. 运筹学笔记12 大M法

    引入M,其中M是一个充分大的正数.由此,目标函数也改变为zM. 如此构造的线性规划问题我们记作LPM,称之为辅助线性规划问题,也即在原来的线性规划问题的基础上,改造了其等式约束条件,然后有对目标函数施 ...

  7. 简单工厂法( Factory Method)

    工厂方法 (Factory Method) Define an interface for creating an object ,but let subclasses decide which cl ...

  8. 关于大O法的几点解释

    大O表示法指出算法有多快.例如,假设列表包含n个元素.简单查找需要检查每个元素,因此需要执行n次操作.使用大O表示法,这个运行时间为O(n).主要单位不是秒啊,大O表示法值得并非以秒为单位的速度,而是 ...

  9. OTSU大津法对图像二值化

    OTSU算法 (1)原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于背景的像素个数占整幅图像的比例记为ω0,其平均灰度μ0:前景像素个数占整幅图像的比例为ω1,其平均灰度为μ1 ...

随机推荐

  1. [ASE][Daily Scrum]11.27

    View Shilin Liu 设计死亡处理 Yiming Liao 处理tank-子弹碰撞事件     Server Songtao He 修复子弹队列满时的bug Junbei Zhang 服务器 ...

  2. SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好?

    SQLSERVER 里SELECT COUNT(1) 和SELECT COUNT(*)哪个性能好? 今天遇到某人在我以前写的一篇文章里问到 如果统计信息没来得及更新的话,那岂不是统计出来的数据时错误的 ...

  3. C# 调用restful服务开源库

    .NET环境下我们想调用其它开放平台的服务接口,不需要自己去实现底层,开源的库用起来会很方便 hammock http://www.cnblogs.com/shanyou/archive/2012/0 ...

  4. 如何快速把hdfs数据动态导入到hive表

    1. hdfs 文件   {"retCode":1,"retMsg":"Success","data":[{" ...

  5. Windows Azure 服务器时间问题

    最近一直在做学校的一个小项目,前期在没有服务器端的情况下意淫做出来了手机客户端.在寒假里使用ASP.NET快速做了一个网站并且设计好了需要使用其他内容,在Windows Azure上测试评估,为学校的 ...

  6. 一个App完成入门篇(二)-搭建主框架

    通过第一课的学习,你已经掌握了如何通过debug调试器来跟PC上的设计器联调来实时查看UI设计效果.调试代码了,接下来通过一系列的demo开发教学你将很快上手学习到如何开发一个真正的App. 要开发A ...

  7. 浅谈Excel开发:十 Excel 开发中与线程相关的若干问题

    采用VSTO或者Shared Add-in等技术开发Excel插件,其实是在与Excel提供的API在打交道,Excel本身的组件大多数都是COM组件,也就是说通过Excel PIA来与COM进行交互 ...

  8. Redis教程(十一):虚拟内存介绍:

    转载于:http://www.itxuexiwang.com/a/shujukujishu/redis/2016/0216/138.html 一.简介: 和大多NoSQL数据库一样,Redis同样遵循 ...

  9. ASP.net的文件扩展名

    尽管ASP.NET中采用的是事件响应模式,使程序开发人员和最终用户感觉与WinForm程序非常接近,但是它毕竟还是Web应用程序.而Web应用程序的特点,就是基于浏览器与服务器的请求与响应的执行方式. ...

  10. C#并行编程-并发集合

    菜鸟学习并行编程,参考<C#并行编程高级教程.PDF>,如有错误,欢迎指正. 目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 ...