【题解】[AHOI2013]作业
题目大意:\(n\)个数,\(m\)个询问,每次四个参数,\(l,r,a,b\),问区间\([l,r]\)中出现过的,数值在\([a,b]\)区间中的数的个数以及区间\([l,r]\)中数值在\([a,b]\)中的数的个数。
注意理解 这两个是不一样的。
\(\text{Solution:}\)
观察到区间颜色出现次数可以想到莫队。
由于多了一个限制,那么我们考虑如何更新答案,并利用前缀思想:
指针移动的时候,维护颜色数以及这个颜色的值,对应在一个树状数组上更新。注意维护两个树状数组,分别处理两个询问。其他的和普通莫队没什么区别。
复杂度\(O(n\sqrt{n}\log n).\)此处替换\(m\)因为它们同阶。
其实还有莫队套分块的更优复杂度以及\(KDT,cdq\)分治等多种做法,在此不做赘述。
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) (x&(-x))
const int MAXN=1e6+10;
int col[MAXN],cnt[MAXN],a[MAXN],n,m,tr[MAXN];
int bl[MAXN],siz,bnum,now,tr1[MAXN];
pair<int,int>ans[MAXN];
inline bool R(char C){return C>='0'&&C<='9';}
inline int read(){
int s=0;
char ch=getchar();
while(!R(ch))ch=getchar();
while(R(ch))s=s*10+ch-48,ch=getchar();
return s;
}
inline void write(int x){
if(x<0)putchar('-'),x=-x;
if(x>=10)write(x/10);
putchar(x%10+48);
}
struct Q{
int l,r,a,b,id;
}q[MAXN];
inline bool cmp(Q a,Q b){return (bl[a.l]^bl[b.l])?bl[a.l]<bl[b.l]:(bl[a.l]&1)?a.r<b.r:a.r>b.r;}
inline void change(int x,int v){for(;x<=n;x+=lowbit(x))tr[x]+=v;}
inline int sum(int x){int res=0;for(;x;x-=lowbit(x))res+=tr[x];return res;}
inline void change2(int x,int v){for(;x<=n;x+=lowbit(x))tr1[x]+=v;}
inline int sum2(int x){int res=0;for(;x;x-=lowbit(x))res+=tr1[x];return res;}
inline void del(int x){
--cnt[a[x]];
if(!cnt[a[x]])now--,change(a[x],-1);
change2(a[x],-1);
}
inline void add(int x){
if(!cnt[a[x]])change(a[x],1),now++;
++cnt[a[x]];change2(a[x],1);
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;++i)a[i]=read();
siz=sqrt(n);bnum=ceil((double)n/siz);
for(int i=1;i<=bnum;++i)for(int j=(i-1)*siz+1;j<=i*siz;++j)bl[j]=i;
for(int i=1;i<=m;++i){
q[i].id=i;
q[i].l=read();
q[i].r=read();
q[i].a=read();
q[i].b=read();
}
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(int i=1;i<=m;++i){
int ql=q[i].l,qr=q[i].r;
while(l<ql)del(l++);
while(l>ql)add(--l);
while(r<qr)add(++r);
while(r>qr)del(r--);
ans[q[i].id].first=sum2(q[i].b)-sum2(q[i].a-1);
ans[q[i].id].second=sum(q[i].b)-sum(q[i].a-1);
}
for(int i=1;i<=m;++i)write(ans[i].first),putchar(' '),write(ans[i].second),putchar('\n');
return 0;
}
【题解】[AHOI2013]作业的更多相关文章
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- Bzoj 3236: [Ahoi2013]作业 莫队,分块
3236: [Ahoi2013]作业 Time Limit: 100 Sec Memory Limit: 512 MBSubmit: 1113 Solved: 428[Submit][Status ...
- 【Luogu4396】[AHOI2013]作业(莫队)
[Luogu4396][AHOI2013]作业(莫队) 题面 洛谷 题解 模板题 #include<iostream> #include<cstdio> #include< ...
- 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
[BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...
- BZOJ 3236: [Ahoi2013]作业
3236: [Ahoi2013]作业 Time Limit: 100 Sec Memory Limit: 512 MBSubmit: 1393 Solved: 562[Submit][Status ...
- BZOJ 3236: [Ahoi2013]作业( 莫队 + BIT )
莫队..用两个树状数组计算.时间复杂度应该是O(N1.5logN). 估计我是写残了...跑得很慢... ----------------------------------------------- ...
- BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块
BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...
- [AHOI2013]作业
[AHOI2013]作业 题目大意: 给定一个长度为\(n(n\le10^5)\)的数列\(A(1\le A_i\le n)\).\(m(m\le10^6)\)次询问,每次询问区间\([l,r]\)内 ...
- BZOJ3236: [AHOI2013]作业
BZOJ3236: [AHOI2013]作业 题目描述 传送门 行,我知道是Please contact lydsy2012@163.com! 传送门2 题目分析 这题两问还是非常,emmmm. 首先 ...
- bzoj 3236: [Ahoi2013]作业(缺线段树)
3236: [Ahoi2013]作业 Time Limit: 100 Sec Memory Limit: 512 MBSubmit: 1744 Solved: 702[Submit][Status ...
随机推荐
- webdriver实现简单的窗口切换
webdriver实现简单的窗口切换,也只能是简单的,因为目前处于学习阶段,复杂的情况现在还没碰到过.之前写过关于一个小demo的总结,就有提到过在新开窗口进行操作的情况,用以下一句就可以搞定了,la ...
- Mac上如何降级Java版本
升级到了Java9,有些工具就不工作了.因此要降级到Java8.方法: /Library/Java/JavaVirtualMachines/下的高版本SDK即可
- hdu 4010 Lct动态链接树
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include & ...
- Codeforces 1321C Remove Adjacent
题意 给你一个字符串,字符\(s_i\)可以被伤处当且仅当\(s_{i-1}=s_i-1\)或\(s_{i+1}=s_i-1\).问最多能删几个字符. 解题思路 其实,有个很简单的做法就是从\(z\) ...
- Linux服务器关联Git,通过执行更新脚本实现代码同步
1.在Linux服务器安装Git yum install git -y tips: 卸载Git : yum remove git 2.在Linux生成ssh key 1)创建用户 git ...
- Mybatis联合查询(一)
Mybatis的简单联合查询操作: 实体类: Employee: package com.test.mybatis; public class Employee { private Integer i ...
- InnoDB 引擎中的索引类型
首先索引是一种数据结构,并且索引不是越多越好.合理的索引可以提高存储引擎对数据的查询效率. 形象一点来说呢,索引跟书本的目录一样,能否快速的查找到你需要的信息,取决于你设计的目录是否合理. MySQL ...
- JDK8(jdk-8u212-windows-x64) 下载 安装 及设置
JDK8 下载页面 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 19.8.2 ...
- leetcode刷题-71简化路径
题目 以 Unix 风格给出一个文件的绝对路径,你需要简化它.或者换句话说,将其转换为规范路径. 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身:此外,两个点 (..) 表示将目录切换到 ...
- 解决 Mac 上 Docker 无法直接 ping 通的问题
解决 Mac 上 Docker 无法直接 ping 通的问题 原文连接 一.背景 Mac os Mojave 10.14.3 Docker Desktop community 2.3.0.4 二.问题 ...