背景

在使用缓存时,容易发生缓存击穿。

缓存击穿:一个存在的key,在缓存过期的瞬间,同时有大量的请求过来,造成所有请求都去读dB,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。

singleflight

介绍

import "golang.org/x/sync/singleflight"

singleflight类的使用方法就新建一个singleflight.Group,使用其方法Do或者DoChan来包装方法,被包装的方法在对于同一个key,只会有一个协程执行,其他协程等待那个协程执行结束后,拿到同样的结果。

  • Group结构体

    代表一类工作,同一个group中,同样的key同时只能被执行一次。
  • Do方法

    func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool)

    key:同一个key,同时只有一个协程执行。

    fn:被包装的函数。

    v:返回值,即执行的结果。其他等待的协程都会拿到。

    shared:表示是否有其他协程得到了这个结果v。
  • DoChan方法

    func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result

    与Do方法一样,只是返回的是一个channel,执行结果会发送到channel中,其他等待的协程都可以从channel中拿到结果。

ref:https://godoc.org/golang.org/x/sync/singleflight

示例

  • 使用Do方法来模拟,解决缓存击穿的问题
func main() {
var singleSetCache singleflight.Group getAndSetCache:=func (requestID int,cacheKey string) (string, error) {
log.Printf("request %v start to get and set cache...",requestID)
value,_, _ :=singleSetCache.Do(cacheKey, func() (ret interface{}, err error) {//do的入参key,可以直接使用缓存的key,这样同一个缓存,只有一个协程会去读DB
log.Printf("request %v is setting cache...",requestID)
time.Sleep(3*time.Second)
log.Printf("request %v set cache success!",requestID)
return "VALUE",nil
})
return value.(string),nil
} cacheKey:="cacheKey"
for i:=1;i<10;i++{//模拟多个协程同时请求
go func(requestID int) {
value,_:=getAndSetCache(requestID,cacheKey)
log.Printf("request %v get value: %v",requestID,value)
}(i)
}
time.Sleep(20*time.Second)
}

输出:

2020/04/12 18:18:40 request 4 start to get and set cache...
2020/04/12 18:18:40 request 4 is setting cache...
2020/04/12 18:18:40 request 2 start to get and set cache...
2020/04/12 18:18:40 request 7 start to get and set cache...
2020/04/12 18:18:40 request 5 start to get and set cache...
2020/04/12 18:18:40 request 1 start to get and set cache...
2020/04/12 18:18:40 request 6 start to get and set cache...
2020/04/12 18:18:40 request 3 start to get and set cache...
2020/04/12 18:18:40 request 8 start to get and set cache...
2020/04/12 18:18:40 request 9 start to get and set cache...
2020/04/12 18:18:43 request 4 set cache success!
2020/04/12 18:18:43 request 4 get value: VALUE
2020/04/12 18:18:43 request 9 get value: VALUE
2020/04/12 18:18:43 request 6 get value: VALUE
2020/04/12 18:18:43 request 3 get value: VALUE
2020/04/12 18:18:43 request 8 get value: VALUE
2020/04/12 18:18:43 request 1 get value: VALUE
2020/04/12 18:18:43 request 5 get value: VALUE
2020/04/12 18:18:43 request 2 get value: VALUE
2020/04/12 18:18:43 request 7 get value: VALUE

可以看到确实只有一个协程执行了被包装的函数,并且其他协程都拿到了结果。

源码分析

看一下这个Do方法是怎么实现的。

首先看一下Group的结构:

type Group struct {
mu sync.Mutex
m map[string]*call //保存key对应的函数执行过程和结果的变量。
}

Group的结构非常简单,一个锁来保证并发安全,另一个map用来保存key对应的函数执行过程和结果的变量。

看下call的结构:

type call struct {
wg sync.WaitGroup //用WaitGroup实现只有一个协程执行函数
val interface{} //函数执行结果
err error
forgotten bool
dups int //含义是duplications,即同时执行同一个key的协程数量
chans []chan<- Result
}

看下Do方法

func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
g.mu.Lock()//写Group的m字段时,加锁保证写安全。
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {//如果key已经存在,说明已经有协程在执行,则dups++,并等待其执行完毕后,返回其执行结果,执行结果保存在对应的call的val字段里
c.dups++
g.mu.Unlock()
c.wg.Wait()
return c.val, c.err, true
}
//如果key不存在,则新建一个call,并使用WaitGroup来阻塞其他协程,同时在m字段里写入key和对应的call
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock() g.doCall(c, key, fn)//第一个进来的协程来执行这个函数
return c.val, c.err, c.dups > 0
}

继续看下g.doCall里具体干了什么

func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
c.val, c.err = fn()//执行被包装的函数
c.wg.Done()//执行完毕后,就可以通知其他协程可以拿结果了 g.mu.Lock()
if !c.forgotten {//其实这里是为了保证执行完毕之后,对应的key被删除,Group有一个方法Forget(key string),可以用来主动删除key,这里是判断那个方法是否被调用过,被调用过则字段forgotten会置为true,如果没有被调用过,则在这里把key删除。
delete(g.m, key)
}
for _, ch := range c.chans {//将执行结果发送到channel里,这里是给DoChan方法使用的
ch <- Result{c.val, c.err, c.dups > 0}
}
g.mu.Unlock()
}

由此看来,其实现是非常简单的。不得不赞叹一百来行代码就实现了功能。

其他

顺便附上DoChan方法的使用示例:

func main() {
var singleSetCache singleflight.Group getAndSetCache:=func (requestID int,cacheKey string) (string, error) {
log.Printf("request %v start to get and set cache...",requestID)
retChan:=singleSetCache.DoChan(cacheKey, func() (ret interface{}, err error) {
log.Printf("request %v is setting cache...",requestID)
time.Sleep(3*time.Second)
log.Printf("request %v set cache success!",requestID)
return "VALUE",nil
}) var ret singleflight.Result timeout := time.After(5 * time.Second) select {//加入了超时机制
case <-timeout:
log.Printf("time out!")
return "",errors.New("time out")
case ret =<- retChan://从chan中取出结果
return ret.Val.(string),ret.Err
}
return "",nil
} cacheKey:="cacheKey"
for i:=1;i<10;i++{
go func(requestID int) {
value,_:=getAndSetCache(requestID,cacheKey)
log.Printf("request %v get value: %v",requestID,value)
}(i)
}
time.Sleep(20*time.Second)
}

看下DoChan的源码

func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
ch := make(chan Result, 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
c.chans = append(c.chans, ch)//可以看到,每个等待的协程,都有一个结果channel。从之前的g.doCall里也可以看到,每个channel都给塞了结果。为什么不所有协程共用一个channel?因为那样就得在channel里塞至少与协程数量一样的结果数量,但是你却无法保证用户一个协程只读取一次。
g.mu.Unlock()
return ch
}
c := &call{chans: []chan<- Result{ch}}
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock() go g.doCall(c, key, fn) return ch
}

使用Golang的singleflight防止缓存击穿的更多相关文章

  1. 使用singleflight防止缓存击穿(Java)

    缓存击穿 在使用缓存时,我们往往是先根据key从缓存中取数据,如果拿不到就去数据源加载数据,写入缓存.但是在某些高并发的情况下,可能会出现缓存击穿的问题,比如一个存在的key,在缓存过期的一刻,同时有 ...

  2. Redis缓存穿透、缓存雪崩和缓存击穿理解

    1.缓存穿透(不存在的商品访问数据造成压力) 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并 ...

  3. redis 缓存击穿 看一篇成高手系列3

    什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...

  4. redis缓存雪崩,缓存穿透,缓存击穿的解决方法

    一.缓存雪崩 缓存雪崩表示在某一时间段,缓存集中失效,导致请求全部走数据库,有可能搞垮数据库,使整个服务瘫痪. 使缓存集中失效的原因: 1.redis服务器挂掉了. 2.对缓存数据设置了相同的过期时间 ...

  5. 缓存击穿、缓存失效及热点key的解决方案

    分布式缓存是网站服务端经常用到的一种技术,在读多写少的业务场景中,通过使用缓存可以有效地支撑高并发的访问量,对后端的数据库等数据源做到很好地保护.现在市面上有很多分布式缓存,比如Redis.Memca ...

  6. Redis 缓存穿透,缓存击穿,缓存雪崩的解决方案分析

    设计一个缓存系统,不得不要考虑的问题就是:缓存穿透.缓存击穿与失效时的雪崩效应. 一.什么样的数据适合缓存? 分析一个数据是否适合缓存,我们要从访问频率.读写比例.数据一致性等要求去分析.  二.什么 ...

  7. redis缓存穿透、缓存击穿、缓存雪崩

    缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控 ...

  8. 【Redis】- 缓存击穿

    什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...

  9. 使用BloomFilter布隆过滤器解决缓存击穿、垃圾邮件识别、集合判重

    Bloom Filter是一个占用空间很小.效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成.可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1). 在很多场景下 ...

随机推荐

  1. 笔记:安装VM Tools、vim编辑器、压缩包、Linux用户管理

    一.VM Tools安装 1.作用:方便我们在虚拟机和宿主机之间复制数据或移动文件等. 2.安装步骤: step1:在菜单栏找到虚拟机---->找到安装vm tools ,点击: step2:进 ...

  2. 理解C#中的ConfigureAwait

    原文:https://devblogs.microsoft.com/dotnet/configureawait-faq/ 作者:Stephen 翻译:xiaoxiaotank 静下心来,你一定会有收获 ...

  3. 高并发&性能优化(一)------总体介绍

    [开篇词] 本文主要通过一些经典的高并发场景,以及一些基本的运维工具来讲述一些关于高并发以及性能优化相关的内容,主要包括性能瓶颈的定位,性能调优的思路和技巧等. [性能的衡量指标] ?什么是性能 性能 ...

  4. 卡方检验(Chi_square_test): 原理及python实现

    概述 What for?主要用在某个变量(或特征)值是不是和应变量有显著关系,换种说法就是看某个变量是否独立 \(X^2=\sum{\frac{(observed-expected)^2}{expec ...

  5. 赫然:怎样学习seo优化技术

    http://www.wocaoseo.com/thread-79-1-1.html 今天的题目是学习SEO起步阶段每个人都要问的.SEO怎么学?如何进阶SEO技能?都包括哪些知识?笔者也自己总结过一 ...

  6. 不要再学 JSP 了,学 SpringBoot + Thymeleaf + Vue吧

    老读者就请肆无忌惮地点赞吧,微信搜索[沉默王二]关注这个在九朝古都洛阳苟且偷生的程序员.本文 GitHub github.com/itwanger 已收录,里面还有我精心为你准备的一线大厂面试题. 读 ...

  7. 力扣Leetcode 179. 最大数 EOJ 和你在一起 字符串拼接 组成最大数

    最大数 力扣 给定一组非负整数,重新排列它们的顺序使之组成一个最大的整数. 示例 1: 输入: [10,2] 输出: 210 示例 2: 输入: [3,30,34,5,9] 输出: 9534330 说 ...

  8. AlexNet实现cifar10数据集分类

    import tensorflow as tf import os from matplotlib import pyplot as plt import tensorflow.keras.datas ...

  9. JS数组遍历的十二种方式

    遍历有如下几种方式 数组方法 map forEach filter find findIndex every some reduce reduceRight 其他方法 for for in for o ...

  10. Python爬取网易云音乐歌手歌曲和歌单

    仅供学习参考 Python爬取网易云音乐网易云音乐歌手歌曲和歌单,并下载到本地 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做 ...