1. 概述

接着上一篇《Linux内核源码分析之setup_arch (一)》继续分析,本文首先分析arm_memblock_init函数,然后分析内核启动阶段的是如何进行内存管理的。

2. arm_memblock_init

该函数的功能比较简单,主要就是把meminfo中记录的内存条信息添加到memblock.memory中,然后把内核镜像所在内存区域添加到memblock.reserved中,arm_mm_memblock_reserve把页表所在内存区域添加到memblock.reserved中;如果使用了设备树,则使用arm_dt_memblock_reserve来保留所占用的内存,最后则是调用CPU相关的mdesc->reserve,其对应的调用为cpu_mem_reserve,该函数定义在cpu.c中。

/* arch/arm/mm/init.c */
void __init arm_memblock_init(...) {
for (i = 0; i < mi->nr_banks; i++)
memblock_add(mi->bank[i].start, mi->bank[i].size); memblock_reserve(__pa(_stext), _end - _stext);
arm_mm_memblock_reserve();
arm_dt_memblock_reserve(); if (mdesc->reserve)
mdesc->reserve(); arm_memblock_steal_permitted = false;
memblock_allow_resize();
memblock_dump_all();
}
/* include/kernel/memblock.h */
struct memblock {
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
};

3. memblock_alloc

接下来就该执行paging_init函数了,在分析paging_init之前先来点内核启动阶段的内存管理相关的内容。从arm_memblock_init开始引入memblock数据结构,其作用是实现内核启动初期的内存管理功能,严格来说,其生命周期到paging_init::bootmem_init为止,memblock_alloc调用流程如下。

实际查找空闲内存的函数为memblock_find_in_range_node,而该函数中真正实现空闲内存查找的是for_each_free_mem_range_reverse这个宏定义。

/* mm/memblock.c */
phys_addr_t memblock_find_in_range_node(...)
{
...
for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
...
if (cand >= this_start)
return cand;
}
return 0;
}

该宏定义如下,然而其中又嵌套了一个函数Orz...

/* include/linux/memblock.h */
#define for_each_free_mem_range_reverse(i, nid, p_start, p_end, p_nid) \
for (i = (u64)ULLONG_MAX, \
__next_free_mem_range_rev(&i, nid, p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
__next_free_mem_range_rev(&i, nid, p_start, p_end, p_nid))

首先需要说明的是,memblock.reserved标识的区域表示的是已被占用的内存区域,memblock.memory中记录的是内存条信息。现在回到__next_free_mem_range_rev函数,代码段(1)(2)的目的是找出内存条上两个reserved区域之间的内存区域,即空闲区域。找到之后再经过代码段(3)对空闲区域的起始地址和结束地址进行修正,因为代码段(1)(2)只能保证空闲区与当前内存条存在交集,并不能保证该空闲区域完全处于当前内存条之中,主要原因在于无法保证这两个reserved区域都在当前内存条上。

/* mm/memblock.c */
void __init_memblock __next_free_mem_range_rev(...)
{
struct memblock_type *mem = &memblock.memory;
struct memblock_type *rsv = &memblock.reserved;
...
/* (1) */
for ( ; mi >= 0; mi--) {
struct memblock_region *m = &mem->regions[mi];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
...
/* (2) */
for ( ; ri >= 0; ri--) {
struct memblock_region *r = &rsv->regions[ri];
phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
...
/* (3) */
if (m_end > r_start) {
if (out_start)
*out_start = max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
*out_nid = memblock_get_region_node(m); ...
return;
}
}
} *idx = ULLONG_MAX;
}

至此,空闲区域的查找基本就结束了,回到memblock_find_in_range_node函数中,再检查一下该区域的起始地址和结束地址是否合法等等,最终就申请到了所请求大小的内存区域,最后只需要将这块内存区域标记为reserved状态就结束了内存分配的整个过程了。

/* mm/memblock.c */
int memblock_reserve(phys_addr_t base, phys_addr_t size)
{
struct memblock_type *_rgn = &memblock.reserved;
return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
}

4. 总结

  • arm_memblock_init函数首先把记录在meminfo记录的内存条信息转移到memblock.memory中,然后把已经使用的内存区域记录到memblock.reserved中,主要包括内核镜像所占用区域、页表区域以及设备树;
  • memblock_alloc通过memblock中的memory和reserved中记录的信息进行内存管理,每次申请到内存之后都在memblock.reserved中进行记录。

Linux内核源码分析之setup_arch (二)的更多相关文章

  1. Linux内核源码分析之setup_arch (三)

    1. 前言 在 Linux内核源码分析之setup_arch (二) 中介绍了当前启动阶段的内存分配函数memblock_alloc,该内存分配函数在本篇将要介绍paging_init中用于页表和内存 ...

  2. Linux内核源码分析之setup_arch (四)

    前言 Linux内核源码分析之setup_arch (三) 基本上把setup_arch主要的函数都分析了,由于距离上一篇时间比较久了,所以这里重新贴一下大致的流程图,本文主要分析的是bootmem_ ...

  3. Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.c ...

  4. Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  5. Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7)

    http://blog.chinaunix.net/uid-20543672-id-3157283.html Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3 ...

  6. Linux内核源码分析 day01——内存寻址

    前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...

  7. 【转】Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  8. Linux内核源码分析方法_转

    Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...

  9. Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://bl ...

随机推荐

  1. 创建ABP Angular客户端(二)使用模板创建Angular前端

    现在我们使用ABP CLI创建Angular客户端. 首先,进入控制台,创建一个空目录,进入这个目录,执行: abp new ZL.Test -u angular 这里我们使用与上一个系列相同的项目名 ...

  2. Interface(接口分享)第一节

    一.接口初探 有时候我们传入的参数可能会包含很多的属性,但是编译器只会检查那些必须的属性是否存在,以及类型是否匹配,而咱们要讲的接口其实就是用来描述下面这个例子里的结构,对于接口传入的数据咱们只关心它 ...

  3. cephfs元数据池故障的恢复

    前言 cephfs 在L版本已经比较稳定了,这个稳定的意义个人觉得是在其故障恢复方面的成熟,一个文件系统可恢复是其稳定必须具备的属性,本篇就是根据官网的文档来实践下这个恢复的过程 实践过程 部署一个c ...

  4. DockerPush

    1.阿里云镜像发布流程 2.镜像生成 语法:docker commit [OPTIONS] 容器ID [REPOSITORY[:TAG]] [root@pluto data]# docker imag ...

  5. C#设计模式——代理模式(Proxy Pattern)

    引言 在我们的生活中,经常会遇到需要什么东西,但是自己又不是很方便或者对方不是很方便,则就需要中间的一个代理人去解决.例如代购.在软件开发中,也会遇到这样的问题.有些对象有时候会由于网络或其他的障碍, ...

  6. ifconfig结果说明

  7. python笔记(1)---数据类型

    数据类型 基本的五大数据类型 对python中的变量有如下的五种基本的数据类型: Number数字 list列表 Tuple元组 string字符串 Dictionary字典 1.Number [注意 ...

  8. 今天谁也别想阻止我好好学习!「CDR 6·18特惠倒计时2天!」

    前几天小编刷抖音,一个以农夫山泉为创作背景的服装原创视频 让我为之一震 这个自称以捡瓶子为生的服装设计师 让我产生了极为浓烈的兴趣 细扒这位小姐姐的视频 她用身边的常见物品 脑洞大开的画出了一系列插画 ...

  9. leetcode117. 填充每个节点的下一个右侧节点指针 II

    给定一个二叉树struct Node {  int val;  Node *left;  Node *right;  Node *next;}填充它的每个 next 指针,让这个指针指向其下一个右侧节 ...

  10. 【ACwing 100】InDec序列——差分

    (题面来自AcWing) 给定一个长度为 n 的数列 a1,a2,-,an,每次可以选择一个区间 [l,r],使下标在这个区间内的数都加一或者都减一. 求至少需要多少次操作才能使数列中的所有数都一样, ...