Spark Streaming处理Flume数据练习
把Flume Source(netcat类型),从终端上不断给Flume
Source发送消息,Flume把消息汇集到Sink(avro类型),由Sink把消息推送给Spark Streaming并处理后输出
版本信息:spark2.4.0 Flume 1.7.0
(基于pyspark)
一、Flume安装
①、文件导入
# 将apache-flume-1.7.0-bin.tar.gz解压到/usr/local目录下
sudo tar -zxvf apache-flume-1.7.0-bin.tar.gz -C /usr/local
#将解压的文件修改名字为flume,简化操作
sudo mv ./apache-flume-1.7.0-bin ./flume
#把/usr/local/flume目录的权限赋予当前登录Linux系统的用户,这里假设是hadoop用户
sudo chown -R hadoop:hadoop ./flume
②、变量配置
#配置环境变量
sudo vim ~/.bashrc
#加入下面路径
export FLUME_HOME=/usr/local/flume
export FLUME_CONF_DIR=$FLUME_HOME/conf
export PATH=$PATH:$FLUME_HOME/bin
③、flume-env.sh 配置文件修改
cd /usr/local/flume/conf
sudo cp ./flume-env.sh.template ./flume-env.sh
sudo vim ./flume-env.sh
#加入java路径,根据各自路径配置
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64;
④、查看Flume版本
cd /usr/local/flume
./bin/flume-ng version

二、Avro中anent配置文件建立
cd /usr/local/flume/conf2.sudo
vim ./flume-to-spark.conf
新建文件flume-to-spark.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#receive message from port 33333
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 33333
#send message through port 44444
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = localhost
a1.sinks.k1.port = 44444
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000000
a1.channels.c1.transactionCapacity = 1000000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
1.Flume suorce类为netcat,绑定到localhost的33333端口, 消息可以通过telnet localhost 33333 发送到flume suorce
2.Flume Sink类为avro,绑定44444端口,flume sink通过 localhost 44444端口把消息发送出来。而spark streaming程序一直监听44444端口。
三、spark配置
①、下载spark-streaming-kafka-0-8_2.11-2.4.0.jar
2.11对应scala,2.4.0对应spark版本(根据自己配置版本下载)
下载地址:
把这个jar文件放到/usr/local/spark/jars/flume目录下
②、sudo cp ./spark-streaming-kafka-0-8_2.11-2.4.0.jar /usr/local/spark/jars/flume/
③、修改spark目录下conf/spark-env.sh文件中的SPARK_DIST_CLASSPATH变量.把flume的相关jar包添加到此文件中。
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoopclasspath):$(/usr/local/hbase/bin/hbaseclasspath):/usr/local/spark/jars/flume/*:/usr/local/flume/lib/*
四、编写spark程序使用Flume数据源
创建python文件
cd /usr/local/spark/mycode
mkdir flume
cd flume
sudo vim FlumeEventCount.py
代码如下:
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.flume import FlumeUtils
import pyspark
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: flume_wordcount.py <hostname> <port>", file=sys.stderr)
exit(-1)
sc = SparkContext(appName="FlumeEventCount")
ssc = StreamingContext(sc, 10)
hostname= sys.argv[1]
port = int(sys.argv[2])
stream=FlumeUtils.createStream(ssc,hostname,port,pyspark.StorageLevel.MEMORY_AND_DISK_SER_2)
stream.pprint()
stream.count().map(lambda cnt : "Recieve " + str(cnt) +" Flume events!!!!").pprint()
ssc.start()
ssc.awaitTermination()
五、效果测试
首先启动Spark streaming程序(基于pyspark) (终端1)
入参为本地localhose 端口44444(该端口对应flume-to-spark.conf中的sinks端口)
/usr/local/spark/bin/spark-submit --driver-class-path /usr/local/spark/jars/*:/usr/local/spark/jars/flume/* ./FlumeEventCount.py localhost 44444
然后启动一个新的终端,启动Flume Agent (终端2)
cd /usr/local/flume
bin/flume-ng agent --conf ./conf --conf-file ./conf/spark-streaming.conf --name a1 -Dflume.root.logger=INFO,console
最后再启动一个新的终端连接33333端口 (终端3)
telnet localhost 33333#输入hello world
终端1结果如下:(分开返回两条信息)


学习交流,有任何问题还请随时评论指出交流。
Spark Streaming处理Flume数据练习的更多相关文章
- spark streaming集成flume
1. 安装flume flume安装,解压后修改flume_env.sh配置文件,指定java_home即可. cp hdfs jar包到flume lib目录下(否则无法抽取数据到hdfs上): $ ...
- Spark学习之路(十五)—— Spark Streaming 整合 Flume
一.简介 Apache Flume是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming提供了以下两种方式用于Flu ...
- Spark 系列(十五)—— Spark Streaming 整合 Flume
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...
- 通过Spark Streaming处理交易数据
Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架. 由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 10 ...
- Spark Streaming 整合 Flume
Spark Streaming 整合 Flume 一.简介二.推送式方法 2.1 配置日志收集Flume 2.2 项目依赖 2.3 Spark Strea ...
- Spark Streaming揭秘 Day16 数据清理机制
Spark Streaming揭秘 Day16 数据清理机制 今天主要来讲下Spark的数据清理机制,我们都知道,Spark是运行在jvm上的,虽然jvm本身就有对象的自动回收工作,但是,如果自己不进 ...
- Spark Streaming接收Kafka数据存储到Hbase
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712 ...
- Spark Streaming从Flume Poll数据案例实战和内幕源码解密
本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分 ...
- cdh环境下,spark streaming与flume的集成问题总结
文章发自:http://www.cnblogs.com/hark0623/p/4170156.html 转发请注明 如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.n ...
随机推荐
- Springboot mini - Solon详解(三)- Solon的web开发
Springboot min -Solon 详解系列文章: Springboot mini - Solon详解(一)- 快速入门 Springboot mini - Solon详解(二)- Solon ...
- Spring源码分析之AOP从解析到调用
正文: 在上一篇,我们对IOC核心部分流程已经分析完毕,相信小伙伴们有所收获,从这一篇开始,我们将会踏上新的旅程,即Spring的另一核心:AOP! 首先,为了让大家能更有效的理解AOP,先带大家过一 ...
- AWT04-AWT常用组件
1.基本组件 方法名 说明 Button 按钮 Canvas 用于绘画的画布 Checkbox 复选框组件 CheckboxGroup 用于将多个Checkbox合成一组,一组Checkbox只有一个 ...
- Java各版本新增特性, Since Java 8
Java各版本新增特性, Since Java 8 作者:Grey 原文地址: Github 语雀 博客园 Java 8 Reactor of Java 这一章来自于<Spring in Act ...
- Java及Javascript中的浮点运算
在进行金额计算,及某些精确计算时,会出现意想不到的很多小数的情况. 对Java 采用BigDecimal,如下代码示例 package number; import java.math.BigDeci ...
- 浅析JavaWeb开发模式:Model1和Model2
一.前言 在学习JavaWeb的过程中,大家都会接触到Model1和Model2,历史的发展过程是Model1 → Model2.那么它们之间有何相同之处和不同之处呢? 二.Model1 Model1 ...
- webpack配置css-loader
执行 npm init 命令 生成 package.json 文件 在 webstorm 项目中局部安装 webpack(比如安装3.6.0版本) npm install webpack@3.6.0 ...
- Python——元组的基本语法(创建、访问、修改、删除)
Python 元组的使用 Python 的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号 ( ),列表使用方括号 [ ]. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可 ...
- Windows Server 2016介绍与安装
版本介绍 Windows Server 2016 Essentials edition Windows Server 2016 Essentials版是专为小型企业而设计的.它对应于Windows S ...
- 访问需要HTTP Basic Authentication认证的资源的c#的实现 将账号密码放入url
string url = ""; string usernamePassword = username + ":" + password; HttpWebReq ...