LINK:回首过去

考试的时候没推出来 原因:状态真的很差 以及 数论方面的 我甚至连除数分块都给忘了.

手玩几个数据 可以发现 \(\frac{x}{y}\)满足题目中的条件当且仅当 这个是一个既约分数 且 y中只含2,5的因子.

枚举y考虑贡献 先除掉本身的2,5的倍数后变成w1 之后考虑x 1~n中x只要是w1的倍数那么都是不合法的。

把这些数给去掉即可.这样就得到了一个O(n)的做法。

观察数据范围 容易想到 考察的是一个根号的算法。

此时考虑枚举w1 那么可以发现w1要满足 不是2,5的倍数 此时贡献为n/w1 考虑这样的数字有多少个 容易发现可以暴力统计 强行乘上若干个2和若干个5.

推到这里我昨天卡住了 因为这还没有达到很好的效果 忘了整除分块了 直接分块 容易得到一个\(\sqrt{n}log_2log_5\)的做法。

不过这样 只能信仰过题。考虑把两个log优化掉 可以发现求多少个的时候其实是求 1~n/w1中 只包含2,5质因子数的个数。

将这个东西预处理 然后从小到大排序 整除分块的时候 就可以单调的判断了 复杂度\(\sqrt{n}+log^3\)

中间一个小步骤需要简单容斥一下.

const ll MAXN=10010;
ll n,ans,cnt;
ll a[MAXN];
inline ll calc(ll x)
{
return x-x/2-x/5+x/10;
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);
for(ll i=1;i<=n;i=i*2)
for(ll j=1;i*j<=n;j=j*5)a[++cnt]=i*j;
sort(a+1,a+1+cnt);
ll w1,w2,flag=cnt;
for(ll i=1;i<=n;i=w2+1)
{
w1=n/i;w2=n/w1;
while(a[flag]>w1&&flag)--flag;
ans=ans+w1*(calc(w2)-calc(i-1))*flag;
}
putl(ans);
return 0;
}

luogu P6583 回首过去 简单数论变换 简单容斥的更多相关文章

  1. (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)

    题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...

  2. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  3. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  4. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  5. Help Hanzo (LightOJ - 1197) 【简单数论】【筛区间质数】

    Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has ...

  6. Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】

    Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...

  7. Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...

  8. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  9. 七夕节 (HDU - 1215) 【简单数论】【找因数】

    七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...

随机推荐

  1. 线性DP之小烈送菜

    小烈送菜 小烈一下碰碰车就被乐满地的工作人员抓住了.作为扰乱秩序的惩罚,小烈必须去乐满地里的"漓江村"饭店端盘子. 服务员的工作很繁忙.他们要上菜,同时要使顾客们尽量高兴.一位服务 ...

  2. day48 work

    1 navicat自己玩一玩 2 练习题一定要搞懂 照着我的思路一遍遍的看敲 3 熟悉pymysql的使用 4 sql注入产生的原因和解决方法 了解 5 思考:如何结合mysql实现用户的注册和登录功 ...

  3. 重学 Java 设计模式:实战模版模式「模拟爬虫各类电商商品,生成营销推广海报场景」

    作者:小傅哥 博客:https://bugstack.cn - 原创系列专题文章 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 黎明前的坚守,的住吗? 有人举过这样一个例子,先给你张北大的录 ...

  4. 【题解】p1809 过河问题

    原题传送门 题目分析 现有n个人在东岸,要过河去西岸.开始东岸有一艘船,船最多可承载2人,过河时间以耗时最长的人所需时间为准. 给定n个人的过河时间a,求所有人从东岸到西岸所需的最短时间. 当\(n= ...

  5. java规范总结

    1.所有的相同类型的包装类对象之间值的比较,全部使用 equals 方法比较. 说明:对于 Integer var = ? 在-128 至 127 范围内的赋值,Integer 对象是在 Intege ...

  6. MYSQL 之 JDBC(十四):批量处理JDBC语句提高处理效率

    1.当需要成批插入或者更新记录时.可以采用java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. 2.JDBC的批量处理语句包括下面两个方法: ad ...

  7. python数据处理(五)之数据清洗:研究、匹配与格式化

    1 前言 保持数据格式一致以及可读,否则数据不可能正确合并 清洗数据的过程中记下清洗过程的每一步,方便数据回溯以及过程复用 2 数据清洗基础知识 2.1 找出需要清洗的数据 仔细观察文件,观察数据字段 ...

  8. 数据分析07 /matplotlib绘图

    数据分析07 /matplotlib绘图 目录 数据分析07 /matplotlib绘图 1. 绘制线性图:plt.plot() 2. 绘制柱状图:plt.bar() 3. 绘制直方图:plt.his ...

  9. 微信小程序支付、小程序支付功能、小程序支付方法、微信小程序支付方法

    相信大家在做小程序的时候不可避免的会碰到支付功能小程序的支付和pc的是有区别的小程序的支付方法为 wx.requestPayment wx.requestPayment({ timeStamp: '' ...

  10. [C#]正则表达式的基本用法

    C#正则表达式的基本用法 正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),可以用来检查一个串是否含有某种子串.将匹配的子串替换或者从某个串中取出符合某个 ...