luogu P6583 回首过去 简单数论变换 简单容斥
LINK:回首过去
考试的时候没推出来 原因:状态真的很差 以及 数论方面的 我甚至连除数分块都给忘了.
手玩几个数据 可以发现 \(\frac{x}{y}\)满足题目中的条件当且仅当 这个是一个既约分数 且 y中只含2,5的因子.
枚举y考虑贡献 先除掉本身的2,5的倍数后变成w1 之后考虑x 1~n中x只要是w1的倍数那么都是不合法的。
把这些数给去掉即可.这样就得到了一个O(n)的做法。
观察数据范围 容易想到 考察的是一个根号的算法。
此时考虑枚举w1 那么可以发现w1要满足 不是2,5的倍数 此时贡献为n/w1 考虑这样的数字有多少个 容易发现可以暴力统计 强行乘上若干个2和若干个5.
推到这里我昨天卡住了 因为这还没有达到很好的效果 忘了整除分块了 直接分块 容易得到一个\(\sqrt{n}log_2log_5\)的做法。
不过这样 只能信仰过题。考虑把两个log优化掉 可以发现求多少个的时候其实是求 1~n/w1中 只包含2,5质因子数的个数。
将这个东西预处理 然后从小到大排序 整除分块的时候 就可以单调的判断了 复杂度\(\sqrt{n}+log^3\)
中间一个小步骤需要简单容斥一下.
const ll MAXN=10010;
ll n,ans,cnt;
ll a[MAXN];
inline ll calc(ll x)
{
return x-x/2-x/5+x/10;
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);
for(ll i=1;i<=n;i=i*2)
for(ll j=1;i*j<=n;j=j*5)a[++cnt]=i*j;
sort(a+1,a+1+cnt);
ll w1,w2,flag=cnt;
for(ll i=1;i<=n;i=w2+1)
{
w1=n/i;w2=n/w1;
while(a[flag]>w1&&flag)--flag;
ans=ans+w1*(calc(w2)-calc(i-1))*flag;
}
putl(ans);
return 0;
}
luogu P6583 回首过去 简单数论变换 简单容斥的更多相关文章
- (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)
题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...
- 简单数论之整除&质因数分解&唯一分解定理
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...
- 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)
传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod  nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- Help Hanzo (LightOJ - 1197) 【简单数论】【筛区间质数】
Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
- Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】
Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...
- Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...
- 七夕节 (HDU - 1215) 【简单数论】【找因数】
七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...
随机推荐
- Sightseeing,题解
题目: 题意: 找到从s到t与最短路长度相差少于1的路径总数. 分析: 首先,搞明白题意之后,我们来考虑一下怎么处理这个1,怎样找相差为1的路径呢?我们这样想,如果有相差为1的路径,那么它将会是严格的 ...
- Sta,题解
题目: 分析: 这个有点过于简单,两次Dfs处理出Dp[i],Son[i],Deep[i],Val[i](分别表示以1为根时i所有子树的深度之和,以1为根时i子树节点个数,以1为根时i深度,以i为根时 ...
- 二叉搜索树的后序遍历序列(剑指offer-23)
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 题目解析 采用分治法的思想,找到根结点.左子树的序 ...
- Windows系统appium移动端自动化真机环境搭建
appium-windows-android环境搭建完成以后,就可以进行真机模式下的appium环境搭建啦!! 准备:把要测试的app下载至本机(小波的是把apk放在桌面上,例如:C:\Users\w ...
- UiAutomator源码学习(2)-- UiAutomationBridge
从上一章对UiDevice的学习,可以看出几乎所有的操作都离不开 UiAutomationBridge.重新看一下UIDevice的构造方法: private UiDevice(Instrumenta ...
- 大型Java进阶专题(七) 设计模式之委派模式与策略模式
前言 今天开始我们专题的第七课了.本章节将介绍:你写的代码中是否觉得很臃肿,程序中有大量的if...else,想优化代码,精简程序逻辑,提升代码的可读性,这章节将介绍如何通过委派模式.策略模式让你 ...
- 解决Linux搜狗输入法工具栏无法移动
问题的出现 前两天一位朋友(@午后下午茶)发现一个有趣的情况: 为了复现bug,我把自己的输入法工具栏也挪到了顶栏,果然也无法挪动了 解决方法 原理不明,但解决方法很简单. 如图所示,随便找个输入框打 ...
- flask 源码专题(一):app.run()的背后
当我们用Flask写好一个app后, 运行app.run()表示监听指定的端口, 对收到的request运行app生成response并返回. 现在分析一下, 运行app.run()后具体发生了什么事 ...
- java 基础(一) Sublime Text3搭建Java编译环境(Windows系统)
1. 首先配置好Java环境变量我的jdk版本是1.8.0_191,存放目录是C:\Program Files\Java,因此添加以下环境变量 (1)系统变量→新建 JAVA_HOME 变量,变量值为 ...
- 没内鬼,来点干货!volatile和synchronized
题外话 这篇笔记是我<没内鬼>系列第二篇,其实我计划是把设计模式和多线程并发分为两个系列,统一叫<一起学系列>来系统的介绍 相关的知识,但是想到这篇笔记去年就写成了,一直不发心 ...