(题面来自洛谷)

题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:

操作 1 :把某个节点 x 的点权增加 a 。

操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。

操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

数据范围:N <= 1e5


分析:简化版的ETT。建立括号序列,操作1、3都很容易解决。为了实现操作2,给序列上的点打标记,表示这里存储的是原节点权值的正/负值。用线段树维护区间和,上推时分别合并正负节点数,区间修改时每个线段树节点值\(sum+=val*(pos-neg)\),这样就实现了正负节点的区分操作。同时要求移植子树就变成了ETT的模板题,用Splay/FHQ维护即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
const int maxn(100010);
typedef long long LL;
using namespace std;
int n, m;
LL wt[maxn];
int head[maxn], etop;
struct E {
int to, nxt;
} edge[maxn<<1];
inline void insert(int u, int v) {
edge[++etop] = (E) {v, head[u]};
head[u] = etop;
}
int fst[maxn], sec[maxn], tmr;
LL dat[maxn<<1];
bool cat[maxn<<1];
void dfs(int u, int pre) {
fst[u] = ++tmr;
dat[tmr] = wt[u];
cat[tmr] = 1;
for (int i = head[u], v; i; i = edge[i].nxt) {
if ((v = edge[i].to) == pre) continue;
dfs(v, u);
}
sec[u] = ++tmr;
dat[tmr] = -wt[u];
cat[tmr] = 0;
return;
}
namespace Seg_tree {
#define lc (nd<<1)
#define rc ((nd<<1)|1)
#define mid ((l + r) >> 1)
struct node {
LL sum;
int pos, neg;
friend node operator + (node a, node b) {
return (node) {a.sum + b.sum, a.pos + b.pos, a.neg + b.neg};
}
friend node operator * (node a, LL b) {
return (node) {a.sum + b * (a.pos-a.neg), a.pos, a.neg};
}
} seg[maxn<<3];
LL tag[maxn<<3];
inline void update(int nd) {
seg[nd] = seg[lc] + seg[rc];
}
inline void put_tag(int nd, LL val) {
seg[nd] = seg[nd] * val;
tag[nd] += val;
}
inline void push_down(int nd) {
put_tag(lc, tag[nd]);
put_tag(rc, tag[nd]);
tag[nd] = 0;
}
void build(int nd, int l, int r) {
if (l == r) {
seg[nd] = (node) {dat[l], cat[l], !cat[l]};
return;
}
build(lc, l, mid);
build(rc, mid+1, r);
update(nd);
}
void add(int nd, int l, int r, int ql, int qr, LL val) {
if (l >= ql && r <= qr) {
put_tag(nd, val);
return;
}
if (r < ql || l > qr) return;
push_down(nd);
add(lc, l, mid, ql, qr, val);
add(rc, mid+1, r, ql, qr, val);
update(nd);
}
LL query(int nd, int l, int r, int ql, int qr) {
if (l >= ql && r <= qr) {
return seg[nd].sum;
}
if (r < ql || l > qr) return 0;
push_down(nd);
return query(lc, l, mid, ql, qr) + query(rc, mid+1, r, ql, qr);
}
} using namespace Seg_tree;
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%lld", &wt[i]);
int u, v;
for (int i = 1; i < n; ++i) {
scanf("%d %d", &u, &v);
insert(u, v), insert(v, u);
}
dfs(1, 0);
build(1, 1, 2*n);
int opt;
while (m--) {
scanf("%d %d", &opt, &u);
if (opt == 3) {
printf("%lld\n", query(1, 1, 2*n, 1, fst[u]));
continue;
}
scanf("%d", &v);
if (opt == 1) {
add(1, 1, 2*n, fst[u], fst[u], v);
add(1, 1, 2*n, sec[u], sec[u], v);
} else add(1, 1, 2*n, fst[u], sec[u], v);
}
return 0;
}

【HAOI2015】树上操作的更多相关文章

  1. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  2. HAOI2015 树上操作

    HAOI2015 树上操作 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根 ...

  3. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  4. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  5. 树剖||树链剖分||线段树||BZOJ4034||Luogu3178||[HAOI2015]树上操作

    题面:P3178 [HAOI2015]树上操作 好像其他人都嫌这道题太容易了懒得讲,好吧那我讲. 题解:第一个操作和第二个操作本质上是一样的,所以可以合并.唯一值得讲的点就是:第二个操作要求把某个节点 ...

  6. P3178 [HAOI2015]树上操作

    P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...

  7. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  8. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  9. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  10. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

随机推荐

  1. Spring Boot学习笔记(二)——HelloWorld实现

    提示:要在Eclipse里使用Spring Boot,首先要安装STS插件,前面我们已经安装了STS插件了,可以创建Spring Boot项目了. 1.创建项目: 新建项目,选择Spring Boot ...

  2. puk2367 拓扑排序

    Description The system of Martians' blood relations is confusing enough. Actually, Martians bud when ...

  3. Filebeat 根据不同的日志设置不同的索引

    平时在物理机上使用 Filebeat 收集日志时,会编写多个 filebeat 配置文件然后启动多个 filebeat 进程来收集不同路径下的日志并设置相对应的索引.那么如果将所有的日志路径都写到一个 ...

  4. 浅谈 Johnson 算法

    目录 前言 引入 算法概述 算法流程 正确性证明 代码实现 结语 前言 Johnson 和 Floyd 一样是用来解决无负环图上的全源最短路. 在稀疏图上的表现远远超过 Floyd,时间复杂度 \(O ...

  5. 简单Emacs配置

    (global-set-key [f9] 'compile-file) (global-set-key [f10] 'gud-gdb) (global-set-key (kbd "C-s&q ...

  6. dhcp、tftp、httpd、pxe安装CentOS6.9

    虚拟机网络设置 要xshell连接虚拟机注意设置VMware Network Adapter VMnet2在同一网段 1.利用光盘配置本地yum源 [root@ZYB ~]# mount -r /de ...

  7. 痞子衡嵌入式:RT-UFL - 一个适用全平台i.MXRT的超级下载算法设计

    大家好,我是痞子衡,是正经搞技术的痞子.今天给大家带来的是痞子衡的开源项目 RT-UFL. 痞子衡在近两年多的i.MXRT客户项目支持过程中,遇到的一个相当高频的问题就是制作i.MXRT下载算法.我们 ...

  8. leetcode45:maximum depth of binary tree

    题目描述 求给定二叉树的最大深度, 最大深度是指树的根结点到最远叶子结点的最长路径上结点的数量. Given a binary tree, find its maximum depth. The ma ...

  9. leetcode93:insert-interval

    题目描述 给定一组不重叠的时间区间,在时间区间中插入一个新的时间区间(如果有重叠的话就合并区间). 这些时间区间初始是根据它们的开始时间排序的. 示例1: 给定时间区间[1,3],[6,9],在这两个 ...

  10. EFCore 5 新特性 `SaveChangesInterceptor`

    EFCore 5 新特性 SaveChangesInterceptor Intro 之前 EF Core 5 还没正式发布的时候有发布过一篇关于 SaveChangesEvents 的文章,有需要看可 ...