Introduction:

Deconvolution;   Computational costs; Strided convolutional nets; Markov patches;

1. Q: The task of texture synthesis have considerable computational costs becuase of a numerical deconvolution in previous work.

2. A: the author propose to procompute a feed-forwaed, strided convolutional network :

 This framework can -  

    1.   capture statistics of Markov patches.

 2.   directly generate output of arbitrary dimensions.

3.  this method have considerable advantage in the fact of time-computation.

4. traditional complexity constraints(复杂性约束) using Markov random field that characterizes(表征) images by statistics of local patches of pixels(局部像素快的统计信息).

5. Deep architectures capture appearance variations in object classes beyond the abilities of pixel-level ap-

proaches.(深层架构能够捕获外表形状的变化的能力超过了基于像素水平的方法)

6.two main class of deep generative models:

1. full images models, often including specially trained 'auto-encoder', which limited fidelity(精确度) in details. 

2. deep Markov models, capture the statistics of local patches, and assemble them to high-resolution.  

     Advantage:Markov model have good fidelity of details.

  Disadvantage:  

  如果不重要的的全局结构要被产生, 则需要额外的辅助指导;

  high time computation

       这自然地提供了the blending of patches,并允许重用复杂的、紧急的多层特征表示的 大 型、有区别地训练的神经网络,如VGG网络[30],重新利用它们进行图像合成wih deconvolution framwork.                   

Objective: to improve the effciency of deep Markovian texture synthesis.

The key idea: 

To precompute the inversion of strided the network by fitting a convolutional network [31,29] to the inversion process, which operates purely in a feed-forward fashion.(关键思想是通过将跨步卷积网络拟合到反演过程来预先计算网络的反演,该反演过程纯粹以前馈方式运行)

尽管在固定大小的patch上进行训练,得到的网络可以生成任意尺寸的连续图像,而不需要任何额外的优化或混合,从而产生一个具有特殊风格和高性能的高质量纹理合成器.

The model:

the framework of DCGANs is applied, nonetheless(然而).相同(be equivalent to )


Related work

1.Xie et al. [34] have proved that a generative random field model can be derived from used discriminative networks, and show applications to unguided texture synthesis.(Xie等人的[34]已经证明了从所使用的判别网络中可以导出一个生成的随机场模型,并展示了它在非制导纹理合成中的应用。)

2.full image method with auto-encoders as generative nets.

   DCGANs stabilzed the performance of GANs and  shows the generator have vector arithmeric properties(向量运算性质).生成器具备了“向量运算”的神奇性质,类似于word embedding可以操纵向量,并且能够按照“语义”生成新内容。 

   Adversarial nets  offer perceptual metrics(感知指标) that allow AEs to be trianing effciency.

3. this PatchGANs is the use of feature-patch statistics rather than learn Gaussian distributions of individual feature vectors.(本文的主要概念差异是使用了Li等人的[21]特征-patch统计量,而不是学习单个特征向量的高斯分布,这在更忠实地再现纹理方面提供了一些好处。)


Model  

Motivation:

1.As figure shown,real data does not always comly with(遵守) a Gaussian distribution(a), but a complex nonlinear monifold(复杂的非线性流体)(b), We adversarially learn a mapping to project contextually related patches to that manifold.

2. Statistics based mehods match the disribution of input and target with a Gaussian model.

3. Adversarial training (GANs) can recognize such manifold with its discriminative network. and   strengthen its generative power with a projection on the manifold.

4. to improve adversarial training with contextually corresponding Markovian patches(上下文对应的马尔可夫patches),to focus on depictions(描述) of same context.

Model Depictions: 

for D:

D (green blocks) that learns to distinguish actual feature patches (on VGG 19 layer Relu3 1, purple block) from inappropriately synthesized ones(不当的合成的patches).

第二次比较(管道下面的D)与VGG 19编码相同的图像在较高的,更抽象的层Relu5 1可以选择用于指导the distinguish of content.

for G:

encoding with  VGG19_Relu4_1 and decodes it to pixels of the synthesis image

for MDANs: with a deconvolutional process is driven by adversarial traning

1. D (green blocks) is trained to distinguish  between "neural patches" sampled from the synthesis image and sampled from the example image.

2. the score (1-s) is its texture loss.

 with loss function: 

$E_{t}$ denotes the loss between example texture image and synthsized image.

We initialize $x$ with random noise for un-guided synthesis, or an content image $x_{c}$ for guided synthesis.

with Hinge loss :

Here $s_{i}$ denotes the classication score of i-th neural patch, and $N$ is the total
 number of sampled patches.


for MGANs

1. G decodes a picture through a ordinary convolution followed by  a cascade(级联) of fractional-strided convolutions(分数阶跃卷积) (FS Conv).

Although being trained with fixed size input,  the generator naturally extends to arbitrary size images.

2. 欧式距离的损失函数会使 产生(yield)的图像过于平滑(over-smooth)
3.compared with GANs, PatchGans do not operate on full images, but neural patches. in order to make learning easier with contextual  
correspondence between the patches

4. replace sigmoid by hinge loss.


Experiment detail  

1. augment dataset with rotations and scales

2. samle subwindow of 128-by-128, where neural patches are sampled from its relu3_1 encoding as the input of D.


for Training 

The training process has three main steps:

  • Use MDAN to generate training images (MDAN_wrapper.lua).
  • Data Augmentation (AG_wrapper.lua).
  • Train MGAN (MDAN_wrapper.lua).

(PatchGANs)Pecomputed Real-time Texture Synthesis With Markovian Generative Adversarial Networks的更多相关文章

  1. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  2. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  3. 【Paper Reading】Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis

    Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture ...

  4. 卷积神经网络图像纹理合成 Texture Synthesis Using Convolutional Neural Networks

    代码实现 概述 这是关于Texture Synthesis Using Convolutional Neural Networks论文的tensorflow2.0代码实现,使用keras预训练的VGG ...

  5. 论文笔记之:Generative Adversarial Text to Image Synthesis

    Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...

  6. 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记

    Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...

  7. Generative Adversarial Nets[CycleGAN]

    本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...

  8. Generative Adversarial Nets[pix2pix]

    本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品 ...

  9. Awesome Torch

    Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. T ...

随机推荐

  1. 类加载器ClassLoader

    上篇文章说到,Class类可以通过一个类的全限定名去加载类,那么底层是如何去加载的呢?这就是我们今天要聊的类加载器ClassLoader,其可以通过一个类的全限定名来获取描述此类的二进制字节流,也即是 ...

  2. Mysql探索之Explain执行计划详解

    前言 如何写出效率高的SQL语句,提到这必然离不开Explain执行计划的分析,至于什么是执行计划,如何写出高效率的SQL,本篇文章将会一一介绍. 执行计划 执行计划是数据库根据 SQL 语句和相关表 ...

  3. spring aop 源码分析(二) 代理方法的执行过程分析

    在上一篇aop源码分析时,我们已经分析了一个bean被代理的详细过程,参考:https://www.cnblogs.com/yangxiaohui227/p/13266014.html 本次主要是分析 ...

  4. eureka源码--服务的注册、服务续约、服务发现、服务下线、服务剔除、定时任务以及自定义注册中心的思路

    微服务注册后,在注册中心的注册表结构是一个map: ConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>& ...

  5. Centos-转换或复制文件-dd

    dd 转换或复制文件,同时可以对设备进行备份 相关选项 if 输入文件,可以是设备 of   输出文件,可以是输出设备 bs   指定一个block大小,默认为 512字节 count  指定bs数量

  6. Eclipse 重命名工程、包、类

    Eclipse版本 重命名工程,使用鼠标右键点击工程,选Refactor > Rename...(快捷键:Alt + Shift + R) 重命名包.类的操作与重命名工程一样. 其实,最简单的操 ...

  7. CF877E Danil and a Part-time Job

    题目大意: link 有一棵 n 个点的树,根结点为 1 号点,每个点的权值都是 1 或 0 共有 m 次操作,操作分为两种 get 询问一个点 x 的子树里有多少个 1 pow 将一个点 x 的子树 ...

  8. Python中list的合并

    ①差集 方法一: if __name__ == '__main__':     a_list = [{'a' : 1}, {'b' : 2}, {'c' : 3}, {'d' : 4}, {'e' : ...

  9. 2020Java程序员架构师面试宝典,学习后面试必过,震惊,本人通过这篇教程,拿到了0个offer

    1. 引言 Java后端学习路线 <吐血整理>顶级程序员工具集 https://github.com/AobingJava/JavaFamily 跟上Java8 经历阿里.头条.腾讯等知名 ...

  10. Python基础笔记1-Python读写yaml文件(使用PyYAML库)

    最近在搭建自动化测试项目过程中经常遇到yaml文件的读写,为了方便后续使用,决定记下笔记. 一,YAML 简介 YAML,Yet Another Markup Language的简写,通常用来编写项目 ...