Introduction:

Deconvolution;   Computational costs; Strided convolutional nets; Markov patches;

1. Q: The task of texture synthesis have considerable computational costs becuase of a numerical deconvolution in previous work.

2. A: the author propose to procompute a feed-forwaed, strided convolutional network :

 This framework can -  

    1.   capture statistics of Markov patches.

 2.   directly generate output of arbitrary dimensions.

3.  this method have considerable advantage in the fact of time-computation.

4. traditional complexity constraints(复杂性约束) using Markov random field that characterizes(表征) images by statistics of local patches of pixels(局部像素快的统计信息).

5. Deep architectures capture appearance variations in object classes beyond the abilities of pixel-level ap-

proaches.(深层架构能够捕获外表形状的变化的能力超过了基于像素水平的方法)

6.two main class of deep generative models:

1. full images models, often including specially trained 'auto-encoder', which limited fidelity(精确度) in details. 

2. deep Markov models, capture the statistics of local patches, and assemble them to high-resolution.  

     Advantage:Markov model have good fidelity of details.

  Disadvantage:  

  如果不重要的的全局结构要被产生, 则需要额外的辅助指导;

  high time computation

       这自然地提供了the blending of patches,并允许重用复杂的、紧急的多层特征表示的 大 型、有区别地训练的神经网络,如VGG网络[30],重新利用它们进行图像合成wih deconvolution framwork.                   

Objective: to improve the effciency of deep Markovian texture synthesis.

The key idea: 

To precompute the inversion of strided the network by fitting a convolutional network [31,29] to the inversion process, which operates purely in a feed-forward fashion.(关键思想是通过将跨步卷积网络拟合到反演过程来预先计算网络的反演,该反演过程纯粹以前馈方式运行)

尽管在固定大小的patch上进行训练,得到的网络可以生成任意尺寸的连续图像,而不需要任何额外的优化或混合,从而产生一个具有特殊风格和高性能的高质量纹理合成器.

The model:

the framework of DCGANs is applied, nonetheless(然而).相同(be equivalent to )


Related work

1.Xie et al. [34] have proved that a generative random field model can be derived from used discriminative networks, and show applications to unguided texture synthesis.(Xie等人的[34]已经证明了从所使用的判别网络中可以导出一个生成的随机场模型,并展示了它在非制导纹理合成中的应用。)

2.full image method with auto-encoders as generative nets.

   DCGANs stabilzed the performance of GANs and  shows the generator have vector arithmeric properties(向量运算性质).生成器具备了“向量运算”的神奇性质,类似于word embedding可以操纵向量,并且能够按照“语义”生成新内容。 

   Adversarial nets  offer perceptual metrics(感知指标) that allow AEs to be trianing effciency.

3. this PatchGANs is the use of feature-patch statistics rather than learn Gaussian distributions of individual feature vectors.(本文的主要概念差异是使用了Li等人的[21]特征-patch统计量,而不是学习单个特征向量的高斯分布,这在更忠实地再现纹理方面提供了一些好处。)


Model  

Motivation:

1.As figure shown,real data does not always comly with(遵守) a Gaussian distribution(a), but a complex nonlinear monifold(复杂的非线性流体)(b), We adversarially learn a mapping to project contextually related patches to that manifold.

2. Statistics based mehods match the disribution of input and target with a Gaussian model.

3. Adversarial training (GANs) can recognize such manifold with its discriminative network. and   strengthen its generative power with a projection on the manifold.

4. to improve adversarial training with contextually corresponding Markovian patches(上下文对应的马尔可夫patches),to focus on depictions(描述) of same context.

Model Depictions: 

for D:

D (green blocks) that learns to distinguish actual feature patches (on VGG 19 layer Relu3 1, purple block) from inappropriately synthesized ones(不当的合成的patches).

第二次比较(管道下面的D)与VGG 19编码相同的图像在较高的,更抽象的层Relu5 1可以选择用于指导the distinguish of content.

for G:

encoding with  VGG19_Relu4_1 and decodes it to pixels of the synthesis image

for MDANs: with a deconvolutional process is driven by adversarial traning

1. D (green blocks) is trained to distinguish  between "neural patches" sampled from the synthesis image and sampled from the example image.

2. the score (1-s) is its texture loss.

 with loss function: 

$E_{t}$ denotes the loss between example texture image and synthsized image.

We initialize $x$ with random noise for un-guided synthesis, or an content image $x_{c}$ for guided synthesis.

with Hinge loss :

Here $s_{i}$ denotes the classication score of i-th neural patch, and $N$ is the total
 number of sampled patches.


for MGANs

1. G decodes a picture through a ordinary convolution followed by  a cascade(级联) of fractional-strided convolutions(分数阶跃卷积) (FS Conv).

Although being trained with fixed size input,  the generator naturally extends to arbitrary size images.

2. 欧式距离的损失函数会使 产生(yield)的图像过于平滑(over-smooth)
3.compared with GANs, PatchGans do not operate on full images, but neural patches. in order to make learning easier with contextual  
correspondence between the patches

4. replace sigmoid by hinge loss.


Experiment detail  

1. augment dataset with rotations and scales

2. samle subwindow of 128-by-128, where neural patches are sampled from its relu3_1 encoding as the input of D.


for Training 

The training process has three main steps:

  • Use MDAN to generate training images (MDAN_wrapper.lua).
  • Data Augmentation (AG_wrapper.lua).
  • Train MGAN (MDAN_wrapper.lua).

(PatchGANs)Pecomputed Real-time Texture Synthesis With Markovian Generative Adversarial Networks的更多相关文章

  1. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  2. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  3. 【Paper Reading】Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis

    Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture ...

  4. 卷积神经网络图像纹理合成 Texture Synthesis Using Convolutional Neural Networks

    代码实现 概述 这是关于Texture Synthesis Using Convolutional Neural Networks论文的tensorflow2.0代码实现,使用keras预训练的VGG ...

  5. 论文笔记之:Generative Adversarial Text to Image Synthesis

    Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...

  6. 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》论文笔记

    Code Address:https://github.com/junyanz/CycleGAN. Abstract 引出Image Translating的概念(greyscale to color ...

  7. Generative Adversarial Nets[CycleGAN]

    本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...

  8. Generative Adversarial Nets[pix2pix]

    本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品 ...

  9. Awesome Torch

    Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. T ...

随机推荐

  1. php第三天-数组的定义,数组的遍历,常规数组的操作

    0x01 数组分类 在php中有两种数组:索引数组和关联数组 索引数组的索引值是整数,以0开始.当通过位置来标识东西时用索引数组. 关联数组是以字符串作为索引值,关联数组更像操作表.索引值为列名,用于 ...

  2. 搜索引擎学习(五)Lucene操作索引

    一.代码分析 /** * Lucene入门 * 操作索引 */ public class ManageIndex { public IndexWriter getIndexWriter() throw ...

  3. SQLSERVER如何在子查询中使用ORDER BY

    今天在使用公司的一个pager接口的时候,需要传递一个查询的SQL语句,因为我希望他能够在pager对他查询出来的结果排序之前自己先进行排序, 于是在这个SQL中添加了ORDER BY,但是得到的结果 ...

  4. mysql-9-limit

    #进阶9:分页查询 /* 当要显示的数据,一页显示不全,需要分页提交sql请求 SELECT FROM JOIN ON WHERE GROUP BY HAVING ORDER BY LIMIT off ...

  5. MacOS如何正确配置Idea自带Maven插件的环境变量?(亲测)

    背景 安装了IDEA开发工具,想执行Maven的命令.但是又没有通过自己下载Maven的安装包进行安装,只是想直接使用IDEA自带的Maven插件来执行Maven的各种命令.由于刚开始使用macos对 ...

  6. 027 01 Android 零基础入门 01 Java基础语法 03 Java运算符 07 逻辑“与”运算符

    027 01 Android 零基础入门 01 Java基础语法 03 Java运算符 07 逻辑"与"运算符 本文知识点:Java中的逻辑"与"运算符 逻辑运 ...

  7. The Python Tutorial 和 documentation和安装库lib步骤

    链接: The Python Tutorial : https://docs.python.org/3.6/tutorial/index.html Documentation: https://doc ...

  8. Matlab中imagesc用法

    来源:https://ww2.mathworks.cn/help/matlab/ref/imagesc.html?searchHighlight=imagesc&s_tid=doc_srcht ...

  9. ECMASctipt6总结

    1.let 变量声明以及特性 声明变量 let a; let b, c, d; let e = 1; let f = 2, g = 3; 特性 1.不能重复声明 2.块级作用域  只在块级作用域有效 ...

  10. mysql字段大小写敏感设置

    mysql中varchar类型的字符集一般设置成utf8,然而mysql默认是对大小写不敏感(不区分),如果想要mysql区分大小写需要设置排序规则,规则详解如下:在mysql中存在着各种排序规则:1 ...