逆元,即对给定\(a,p\ (a \perp p)\),求\(x\)使得\(ax \equiv 1 \ (\bmod p)\)

逆元可以看做\(a\)在模\(p\)意义下的\(a^{-1}\)。因此,在模\(p\)意义下,可以用乘\(a\)的逆元的方式来代替除以\(a\)操作

求单个数的逆元

费马小定理求逆元

当\(p\)是质数且\(a\perp p\)时 $$a^{p-1}\equiv1\quad (\bmod p) $$

方程两边同时乘\(a^{-1}\),可以发现$$a^{-1}\equiv a ^{p-2}\quad(\bmod p)$$

可以直接快速幂求 传送门

欧拉定理求逆元

欧拉定理可以适用于满足\(a\perp p\)的情况 $$a^{\varphi(p)}\equiv 1\quad (\bmod p) $$

同理可得$$a^{-1}\equiv a^{\varphi(p)-1} \quad (\bmod p) $$

现在的问题变成了,如何求欧拉函数?

1.线性筛\(O(p)\)求

适用于多个模数的情况 传送门

如果是单一模数怎么办呢?有更高效的做法

2.\(O(\sqrt{p})\)做法

\[\varphi(p)=p\prod\limits_{i}(1-\frac1i)
\]

其中,\(i\)是\(p\)的所有质因子

#define LL long long
LL get_phi(LL n)
{
LL sum = n;
for (LL i = 1; i * i <= n; ++i)
if (n % i == 0)
{
sum -= sum / i;
while (n % i == 0)
n /= i;
}
if (n > 1)
sum -= sum / n;
return sum;
}

exgcd求逆元

exgcd可以求解方程组\(ax+by=c\)的解,而求\(a\)在模\(p\)下的逆元可以转化为求\(ax+py=1\)的解

求多个数的逆元

线性求1~n的逆元

题目传送门

令\(p=ki+r,k=\lfloor\frac pi \rfloor. r=p \bmod i\)

则有\(ki+r \equiv 0\quad (\bmod p)\),乘\(i^{-1},r^{-1}\)可得\(kr^{-1}+i^{-1}\equiv 0\quad (\bmod p)\)

所以\(i^{-1}=-r^{-1}\lfloor\frac pi \rfloor\)

显然可以递推求解

线性求n个数的逆元

题目传送门

先预处理出这n个数的前缀积\(sum_i\),然后求出这n个数积的逆元\(suminv_n\),那么\(suminv_{i-1}=suminv_i*a_i\),\(inv_i=suminv_{i}*sum_{i-1}\)。

noip复习——逆元的更多相关文章

  1. NOIP复习篇

    NOIP复习篇---枚举 --------------------------------------------------------------------------------------- ...

  2. NOIP复习之1 数学数论

    noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...

  3. [Noip复习知识点][个人向]Zackzh

    只是列列一些要复习的,努力复习吧,有种noip退役的赶脚. 一.模拟 (这你也不会?退役吧) 二.DP 1.基础dp 2.区间dp 3.状压dp 4.树形dp 6.概率(期望)dp 7.环形dp 8. ...

  4. 冲刺NOIP复习,算法知识点总结

    前言        离NOIP还有一个星期,匆忙的把整理的算法补充完善,看着当时的整理觉得那时还年少.第二页贴了几张从贴吧里找来的图片,看着就很热血的.当年来学这个竞赛就是为了兴趣,感受计算机之美的. ...

  5. NOIP复习赛20161117

    题目链接:http://files.cnblogs.com/files/candy99/%E9%A2%98%E7%9B%AE1117.pdf A n个等比数列求和公式(都感觉数列忘光了) %1e9+7 ...

  6. 【NOIP复习】最短路总结

    [模板] /*堆优化Dijkstra*/ void dijkstra() { priority_queue<pair<ll,int>,vector<pair<ll,int ...

  7. noip复习模板

    我只会这么多 tarjan:codevs 1332 void tarjan(int u) { dfn[u]=low[u]=Time++; s.push(u); for(int i=head[u];~i ...

  8. [NOIP复习]第三章:动态规划

    一.背包问题 最基础的一类动规问题.相似之处在于给n个物品或无穷多物品或不同种类的物品,每种物品仅仅有一个或若干个,给一个背包装入这些物品,要求在不超出背包容量的范围内,使得获得的价值或占用体积尽可能 ...

  9. noip复习之拓扑排序

    之前很多很多紫书上的东西我都忘了…… 抄题解的后果…… 做了一下裸题 https://vjudge.net/problem/UVA-10305 拓扑排序还可以来判环 #include<bits/ ...

随机推荐

  1. noi linux gedit 配置(c++环境)

    基本配置 方法一 查看所有命令: gsettings list-recursively | grep -i gedit 命令解释 gsettings set org.gnome.gedit.prefe ...

  2. ElementUI 级联选择框 设置最后一级可选及相关问题解决

    在使用 elementUI 的 el-cascader 级联选择框进行省市联动效果时,有这么一个需求:该级联选择框一共有三级结构分别为国家-省份-城市,国家和省份为必选项,城市为可选项.具体实现如下: ...

  3. ISE第三方编辑器的使用

    刚开始使用ISE时候感觉ISE自带的编辑器并没有什么难用的,但是在看到了小梅哥的视频教学中那样行云流水般的操作让我心动不已,由此找到了相关的编辑器.为了以后看着方便直接摘取了前人的经验在我自己的博客中 ...

  4. [leetcode/lintcode 题解] Amazon面试题:连接棒材的最低费用

    为了装修新房,你需要加工一些长度为正整数的棒材 sticks. 如果要将长度分别为 X 和 Y 的两根棒材连接在一起,你需要支付 X + Y 的费用. 由于施工需要,你必须将所有棒材连接成一根. 返回 ...

  5. Dockerfile镜像优化,减小镜像

    前言镜像的优化注意几条: 选择最精简的基础镜像减少镜像的层数清理镜像构建的中间产物注意优化网络请求尽量去用构建缓存使用多阶段构建镜像接下来我们以rhel7镜像构建容器,并在容器中安装nginx的源码包 ...

  6. SpringBoot实现前后端数据交互、json数据交互、Controller接收参数的几种常用方式

    1.获取参数的集中常见注解 @PathVariable:一般我们使用URI template样式映射使用,即url/{param}这种形式,也就是一般我们使用的GET,DELETE,PUT方法会使用到 ...

  7. nrm安装使用(mac)

    在开发工作中时常有需要切换npm源的需求以及更换node版本的情况,这两种情况都有对应的管理器来使用 一.nrm nrm是一个npm源管理工具,使用它可以快速切换npm源. 1.nrm安装(全局安装) ...

  8. A - A Simple Problem with Integers (线段树的区间修改与区间查询)

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...

  9. 读/写xlsx文件

    安装 pip install openpyxl 1.创建Excel电子表格 建立新文档需要调用Workbook对象的save方法,一个Workbook对象代表一个Excel工作簿,该方法的参数是保存的 ...

  10. TCP 客户端

    """ 创建客户端 绑定服务器ip地址和端口号(端口号是整型) 与服务器建立连接 发送给服务器要发送的数据(转码) 接收服务器返回的数据 关闭客户端 "&quo ...