题目大意

\[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p
\]

题解

首先,开始并没有看出来这是数位dp。

后来发现可以一位一位的处理,每一位可以从前一位推出,所以可以考虑数位dp。

我们把要统计的数变为二进制表示,先考虑n位二进制的数,再考虑n-1位的数……,加起来就好辣。

定义f[i][1/0][1/0][1/0]为已经考虑到了第i位,第i位是否比n(第i位)小,第i位是否比m小,是否比k小的总共分数。

定义g[i][1/0][1/0][1/0]为已经考虑到了第i位,第i位是否比n(第i位)小,第i位是否比m小,是否比k小的所有情况总数。

我们从大到小考虑每一位,可以有,

g[i][aa][bb][cc] += g[i+1][a][b][c];

如果从状态(i,a,b,c)可以转移到状态(i-1, aa, bb, cc);

对于

f[i][aa][bb][cc] += f[i+1][a][b][c] + (zz-z)*(1<<i)*g[i+1][a][b][c];

前一项不必多说,后一项就是对于每一种可能都可以在前面加上1/0。

详细可以见代码。

有问题可以在评论区吐槽。。。

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll f[62][2][2][2], g[62][2][2][2]; //log2(10^18) = 60
ll n, m, k, T, p;
int main() {
scanf("%lld", &T);
while (T--) {
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
scanf("%lld %lld %lld %lld", &n, &m, &k, &p);
g[61][1][1][1] = 1;
for (int i = 60; i >= 0; i--) {
int x = (n >> i) & 1, y = (m >> i) & 1, z = (k >> i) & 1;
for (int a = 0; a < 2; a++) {
for (int b = 0; b < 2; b++) {
for (int c = 0; c < 2; c++) {
if (f[i + 1][a][b][c] || g[i + 1][a][b][c]) {
for (int xx = 0; xx < 2; xx++) {
for (int yy = 0; yy < 2; yy++) {
int zz = xx ^ yy;
if ((a && x < xx) || (b && y < yy) || (c && z > zz))
continue;
int aa = (a && x == xx), bb = (b & y == yy),
cc = (c && z == zz);
g[i][aa][bb][cc] = (g[i][aa][bb][cc] + g[i + 1][a][b][c]) % p;
f[i][aa][bb][cc] = (f[i][aa][bb][cc] + f[i + 1][a][b][c] +
((zz - z) + p) % p * ((1ll << i) % p) %
p * g[i + 1][a][b][c] % p) %
p;
}
}
}
}
}
}
}
printf("%lld\n", f[0][0][0][0]);
}
}

[bzoj4513][SDOI2016]储能表——数位dp的更多相关文章

  1. BZOJ4513: [Sdoi2016]储能表(数位dp)

    题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...

  2. 【BZOJ4513】[Sdoi2016]储能表 数位DP

    [BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...

  3. BZOJ 4513: [Sdoi2016]储能表 [数位DP !]

    4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完 ...

  4. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

  5. [SDOI2016]储能表——数位DP

    挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...

  6. 4513: [Sdoi2016]储能表 数位DP

    国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否 ...

  7. BZOJ4513 SDOI2016 储能表 记忆化搜索(动态规划)

    题意: 题面中文,不予翻译:SDOI2016储能表 分析: 据说有大爷用一些奇怪的方法切掉了这道题%%%%% 这里用的是大众方法——动态规划. 其实这是一道类似于二进制数位dp的动态规划题,(但是实际 ...

  8. BZOJ4513 SDOI2016储能表(数位dp)

    如果n.m.k都是2的幂次方,答案非常好统计.于是容易想到数位dp,考虑每一位是否卡限制即可,即设f[i][0/1][0/1][0/1]为第i位是/否卡n.m.k的限制时,之前的位的总贡献:g[i][ ...

  9. BZOJ4513: [Sdoi2016]储能表

    Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 j 列的格子储存着 (i xor j) 点能量. ...

随机推荐

  1. 爬虫之urllib模块

    1. urllib模块介绍 python自带的一个基于爬虫的模块. 作用:可以使用代码模拟浏览器发起请求. 经常使用到的子模块:request,parse. 使用流程: 指定URL. 针对指定的URL ...

  2. perl语言入门总结-第4章-子程序

    子程序定义和返回值 sub sum{ print "调用了子程序\n"; $a + $b; #后一行为返回值 } ; ; $s =∑ #34 调用子程序 子程序中的参数,参数固定( ...

  3. 小白日记1:kali环境Wpscan渗透Wordpress

    一.什么是Wpscan?什么是Wordpres? 1.Wpscan WPScan是一款针对wordpress的安全扫描软件:可以扫描出wordpress的版本,主题,插件,后台用户以及爆破后台用户密码 ...

  4. Go实现try-catch-finally机制

    前言 许多主流语言诸如:Java.Python都实现了try-catch-finally机制,而Go处理错误的方式却与前两种语言不同.关于Go处理异常的方式是好是坏仁者见仁智者见智,笔者还是更喜欢tr ...

  5. erlang节点互通查看

    在局域网内部,一般用短节点名来完成短节点的全联通.     全联通的前提之一是cookie要相同,cookie记录在一个文件中.     对于同一个物理机上的两个erlang节点,不用其他配置就可以全 ...

  6. 【Decision Tree】林轩田机器学习技法

    首先沿着上节课的AdaBoost-Stump的思路,介绍了Decision Tree的路数: AdaBoost和Decision Tree都是对弱分类器的组合: 1)AdaBoost是分类的时候,让所 ...

  7. BFC相关知识

    一.什么是BFC css布局主要采用盒子模型(BOX),元素的类型和 display 属性,决定了 Box 的类型,常见的盒子类型有两种: block-level box:display 属性为 bl ...

  8. Python全栈工程师(多继承、函数重写)

    ParisGabriel                每天坚持手写  一天一篇  决定坚持几年 为了梦想为了信仰    开局一张图 Python人工智能从入门到精通 补充: 对象 --------- ...

  9. 源码分析(一) HashMap 源码分析|JDK8

    HashMap是一个普遍应用于各大JAVA平台的最最最常用的数据结构.<K,V>的存储形式使HashMap备受广大java程序员的喜欢.JDK8中HashMap发生了很大的变化,例如:之前 ...

  10. diskimage-builder element

    root阶段 创建或修改初始根文件系统内容. 这是添加替代分销支持的地方,还是建立在现有图像上的自定义. 只有一个元素可以一次使用它,除非特别注意不要盲目覆盖,而是适应其他元素提取的上下文. -cac ...