题目

P3214 [HNOI2011]卡农

在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了

第一次深感HNOI的毒瘤(题做得太少了!!)

做法

求\([1,n]\)组成的集合中选\(m\)个不同集合且每个元素出现偶数的组合方案

无序(打乱顺序仍记为一种)通常我们对于有序的做法更简单,怎么转换呢

C组合数的公式是怎么得来的?别说你是背来的\(emmm\)(那也没有做这题的必要了)

有序\(m!\)就得到了无序的

我们考虑\(dp\),数组\(dp_i\)表示选i个不同集合的排列方案

异或和为\(0\),则,确定前\(i-1\)个集合则第\(i\)个集合自然也出来了,方案数为\(A_{2^n-1}^{i-1}\)

如果前面\(i-1\)个集合异或和已为\(0\),那第\(i\)个集合为空集,不符题意,这部分的方案数就是\(dp_{i-1}\)

保证所选集合不重复,若\(i\)与前\(i-1\)任意重复,去掉这个重复的集合,为\(dp_{i-2}\),可能的位置有\((i-1)\)个,重复集合个数有\((2^n-1-(i-2))\)

\(dp_i=A_{2^n-1}^{i-1}-dp_{i-1}-dp_{i-2}*(i-1)*(2^n-i+1)\)

最后再乘下逆元就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const LL p=100000007;
const int maxn=1e6+9;
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1)
ret=ret*base%p;
base=base*base%p,
b>>=1;
}
return ret;
}
LL n,m,a,Up,A,ans;
LL dp[maxn];
int main(){
scanf("%lld%lld",&n,&m);
dp[1]=dp[2]=0,
Up=(Pow(2ll,n)-1ll+p)%p,
A=Up;
for(LL i=3;i<=m;++i)
A=A*(Up-i+2)%p,
dp[i]=((A-dp[i-1]+p)%p-dp[i-2]*(i-1)%p*((Up-(i-2)+p)%p)%p +p)%p;
a=1;
for(LL i=2;i<=m;++i)
a=a*i%p;
ans=dp[m]*Pow(a,p-2)%p;
printf("%lld\n",ans);
return 0;
}/*
100 1000
*/

P3214 [HNOI2011]卡农的更多相关文章

  1. 洛谷 P3214 - [HNOI2011]卡农(线性 dp)

    洛谷题面传送门 又是一道我不会的代码超短的题( 一开始想着用生成函数搞,结果怎么都搞不粗来/ll 首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可. 本题个人认为一个比较亮的地方在于 ...

  2. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  3. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  4. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  5. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  6. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  7. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  8. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

  9. bzoj 2339: [HNOI2011]卡农

    Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如 ...

随机推荐

  1. 网上流传的长盛不衰的Steve Jobs(乔布斯) 14分钟“Stay Hungry, Stay Foolish”演讲视频

    http://timyang.net/misc/speech/附:网上流传的长盛不衰的Steve Jobs 14分钟“Stay Hungry, Stay Foolish”演讲视频 (原视频地址:htt ...

  2. checked exception和unchecked exception区别

    http://blog.csdn.net/yuefengyuan/article/details/6204317 一. Java 中定义了两类异常: 1) Checked exception: 这类异 ...

  3. centos安装postgresql

    #安装postgresqlyum -y install postgresql-server #执行数据库初始化脚本service postgresql-9.2 initdb #启动服务service ...

  4. c#利用委托传递函数参数(1)

    本次旨在解决 同参不同名 的函数作为参数传递的情况 情景: 一下两个函数分别多次重复调用了两个同参不同名的函数(实际上总共有3个这样的函数),函数结构基本相同,只有调用的函数名不一样,显然可以整合在一 ...

  5. 搭建SSH框架整合Struts2和Spring时,使用@Autowired注解无法自动注入

    © 版权声明:本文为博主原创文章,转载请注明出处 1.问题描述: 搭建SSH框架,在进行Struts2和Spring整合时,使用Spring的@Autowired自动注入失败,运行报错java.lan ...

  6. hdu 5371 Hotaru&#39;s problem【manacher】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=5371 题意: 给出一个长度为n的串,要求找出一条最长连续子串.这个子串要满足:1:能够平均分成三段 ...

  7. MySQL四-2:完整性约束

    阅读目录 一 介绍 二 not null与default 三 unique 四 primary key 五 auto_increment 六 foreign key 七 作业 一 介绍 约束条件与数据 ...

  8. 2018年EI收录中文期刊目录【转】

    [转]2018年EI收录中文期刊目录 Elsevier官网于2018年1月1日更新了EI Compendex目录,共收录中文期刊158种,其中新增期刊5种. 序号 中文刊名 收录情况 1 声学学报 保 ...

  9. py.test

    只运行某一个用例 pytest test_mod.py::test_func 或者 pytest test_mod.py::TestClass::test_method

  10. thinkPHP5.0的学习研究【序言】

    2017年6月19日13:19:151.ThinkPHP V5.0——为API开发而设计的高性能框架2.ThinkPHP是一个免费开源的,快速.简单的面向对象的轻量级PHP开发框架,是为了敏捷WEB应 ...