矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings
题目链接:https://vijos.org/p/1049
题目大意:顺次给出m个置换,重复使用这m个置换对初始序列进行操作。问k次置换后的序列。m<=10, k<2^31。
首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们须要运行这个置换k/m次(取整。若有余数则剩下几步模拟就可以)。
注意随意一个置换都能够表示成矩阵的形式。比如。将1 2 3 4置换为3 1 2 4,相当于以下的矩阵乘法:

置换k/m次就相当于在前面乘以k/m个这种矩阵。
我们能够二分计算出该矩阵的k/m次方,再乘以初始序列就可以。做出来了别忙着高兴。得意之时就是你灭亡之日。别忘了最后可能还有几个置换须要模拟。
注意:这m个置换相应的矩阵相乘的时候必须左乘
代码例如以下:
///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105; struct Matrix
{
int v[MAX][MAX];
}; int n,m,k; //分别代表的是每一个置换的长度
//置换的一组的个数
//以及一共置换的操作 Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j]);
return C;
} Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
}
return C;
} Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
}
if(k == 1) return A;
Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout<<A.v[i][j]<<" ";
cout<<endl;
}
cout<<endl;
} int main ()
{
int mp[15][105];
scanf("%d%d%d",&n,&m,&k);
int shang=k/m;
int yushu=k%m;
Matrix ans;
Matrix rig;
Matrix B;
Matrix tem; for(int i=0;i<n;i++) rig.v[0][i]=i+1; //out(rig); memset(ans.v,0,sizeof(ans.v));
for(int i=0;i<n;i++) ans.v[i][i]=1; for(int i=0;i<m;i++)
{
memset(B.v,0,sizeof(B.v));
for(int j=0;j<n;j++)
scanf("%d",&mp[i][j]),B.v[mp[i][j]-1][j]=1;
//out(B);
ans=mtMul(ans,B);
if(i==yushu-1) tem=ans;
}
//out(ans);
//out(tem);
ans=mtPow(ans,shang);
ans=mtMul(ans,tem);
//out(ans);
ans=mtMul(rig,ans);
for(int i=0;i<n;i++) cout<<ans.v[0][i]<<" ";
return 0;
}
hdu 2371 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2371
题目大意:给出n 和m,给出n个数,代表一个置换,接着一个字符串s,s经过m次置换后变成还有一个字符串,
如今给出经过m次置换后的字符串,输出原始字符串s
比方:5 3
2 3 1 5 4
hello
需经过3次置换,则"hello" -> "elhol" -> "lhelo" -> "helol"
思路:将置换规则取反(将p[i]位置上的数num[i]变成p[num[i]]上的数。比如,num: 2 3 1 5 4 变成 num: 3 1 2 5 4
p: 1 2 3 4 5 p: 1 2 3 4 5 )
然后将m次置换合并起来,即算出这m个置换的乘积(即origin^m)。然后乘以初始序列[1 2 3 4 ....n],然后输出相应位置的字符就可以。
注意随意一个置换都能够表示成矩阵的形式。比如,将1 2 3 4置换为3 1 2 4,相当于以下的矩阵乘法:

m次置换就相当于前面乘以m个这种矩阵。用矩阵高速幂就可以。
由于没有看清楚题意。第二组例子一直过不了,好心酸.......
///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105; struct Matrix
{
int v[MAX][MAX];
}; int n,p; Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j]);
return C;
} Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
}
return C;
} Matrix mtPow(Matrix origin,int k) //矩阵高速幂
{
int i;
Matrix res;
memset(res.v,0,sizeof(res.v));
for(i=1;i<=n;i++)
res.v[i][i]=1;
while(k)
{
if(k&1)
res=mtMul(res,origin);
origin=mtMul(origin,origin);
k>>=1;
}
return res;
} void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout<<A.v[i][j]<<" ";
cout<<endl;
}
cout<<endl;
} int main ()
{
while(~scanf("%d%d",&n,&p))
{
if(n==0&&p==0) break;
int num[90];
Matrix A;
Matrix B;
memset(B.v,0,sizeof(B.v));
for(int i=0;i<n;i++) B.v[0][i]=i;
memset(A.v,0,sizeof(A.v)); for(int i=0;i<n;i++) scanf("%d",&num[i]),A.v[i][num[i]-1]=1;
//out(A);
getchar();
char c[90];
for(int i=0;i<n;i++) scanf("%c",&c[i]); Matrix ans;
ans=mtPow(A,p);
//out(ans);
ans=mtMul(B,ans);
for(int i=0;i<n;i++) cout<<c[ans.v[0][i]];
cout<<endl;
}
}
矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings的更多相关文章
- hdu 2157 How many ways?? ——矩阵十题第八题
Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, ...
- 矩阵十题【六】 poj3070 Fibonacci
题目链接:http://poj.org/problem? id=3070 题目大意:给定n和10000,求第n个Fibonacci数mod 10000 的值,n不超过2^31. 结果保留四位数字. 非 ...
- [矩阵十题第七题]vijos 1067 Warcraft III 守望者的烦恼 -矩阵快速幂
背景 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她传送到后面的监狱内查看,她比较懒,一般不查看 ...
- 【HDOJ】2371 Decode the Strings
快速矩阵乘法.注意,原始字符串即为decode后的字符串.题目是要找到原始串. #include <cstdio> #include <cstring> #define MAX ...
- Java实习生常规技术面试题每日十题Java基础(五)
目录 1.启动一个线程是用run()还是start()? . 2.线程的基本状态以及状态之间的关系. 3.Set和List的区别,List和Map的区别? 4.同步方法.同步代码块区别? 5.描述Ja ...
- C语言考试解答十题
学院比较奇葩,大一下期让学的VB,这学期就要学C++了,然后在开学的前三个周没有课,就由老师讲三个周的C语言,每天9:30~11:30听课,除去放假和双休日,实际听课时间一共是12天*2小时,下午是1 ...
- Java实习生常规技术面试题每日十题Java基础(八)
目录 1.解释内存中的栈(stack).堆(heap)和静态区(static area)的用法. 2.怎样将GB2312编码的字符串转换为ISO-8859-1编码的字符串? 3.运行时异常与受检异常有 ...
- Java实习生常规技术面试题每日十题Java基础(七)
目录 1. Java设计模式有哪些? 2.GC是什么?为什么要有GC? 3. Java中是如何支持正则表达式. 4.比较一下Java和JavaSciprt. 5.Math.round(11.5) 等于 ...
- Java实习生常规技术面试题每日十题Java基础(六)
目录 1.在Java语言,怎么理解goto. 2.请描述一下Java 5有哪些新特性? 3.Java 6新特性有哪些. 4.Java 7 新特性有哪些. 5.Java 8 新特性有哪些. 6.描述Ja ...
随机推荐
- 湘潭邀请赛 2018 E From Tree to Graph
题意: 给出一棵树以及m,a,b,x0,y0.之后加m条边{(x1,LCA(x1,y1)),(x2,LCA(x2,y2))...(xm,LCA(xm,ym))}.定义z = f(0)^f(1)^... ...
- Java面试题之CyclicBarrier和CountDownLatch的区别
1.CyclicBarrier的某个线程运行到某个点后停止运行,直到所有线程都达到同一个点,所有线程才会重新运行: CountDownLatch线程运行到某个点后,计数值-1,该线程继续运行,直到计数 ...
- 非常好的Linux教程,让你的linux之路更通畅
1 第1讲.Linux应用与发展(上) 2013-10-22 17:43 | 播放(46) | 评论(0) | 时长:51:38 2 第1讲.Linux应用与发展(下) 2013-10-22 17 ...
- 快速激活最新JetBrains公司系列产品包括最新的phpstorm10
快速激活最新JetBrains公司系列产品包括最新的phpstorm10 IntelliJ IDEA开源社区 提供了如下通用激活方法: 注册时选择License server 然后输入框填写:http ...
- Mysql大数据备份及恢复
<p>[引自攀岩人生的博客]MySQL备份一般采取全库备份.日志备份;MySQL出现故障后可以使用全备份和日志备份将数据恢复到最后一个二进制日志备份前的任意位置或时间;mysql的二进制日 ...
- Custom Email Attribute在客户端不起作用原因
原文发布时间为:2011-07-16 -- 来源于本人的百度文章 [由搬家工具导入] Custom Email Attribute在客户端不起作用原因,就是未实现 IClientValidatable ...
- Winform 模拟Session
背景 在Web中Session的功能很好用,于是想Winform中实现该功能,典型应用场景则是登陆成功后,当一段时间不操作,则该会话过期,提示重新登陆. 资源下载 测试代码 示例说明:登陆进去10s不 ...
- 《Linux命令、编辑器与shell编程》第三版 学习笔记---003 使用multibootusb
1.下载文件https://codeload.github.com/mbusb/multibootusb-8.9.0.tar.gz,使用命令: tar xvf multibootusb-8.9.0.t ...
- 11.OpenStack 安装监控和业务流程服务
安装业务流程模块 安装和配置业务流程 创建数据库 mysql -uroot -ptoyo123 CREATE DATABASE heat; GRANT ALL PRIVILEGES ON heat.* ...
- flask框架基本使用(3)(session与cookies)
#转载请留言联系 flask 框架基本使用(1):https://www.cnblogs.com/chichung/p/9756935.html flask 框架基本使用(2):https://www ...