B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest
BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the $j$-th column of the $i$-th row (indicated by $(i, j)$) contains an arrow (pointing either upwards, downwards, leftwards or rightwards) and an integer $a_{i, j}$.
BaoBao decides to play a game with the grid. He will first select a cell as the initial cell and tick it. After ticking a cell (let's say BaoBao has just ticked cell $(i, j)$), BaoBao will go on ticking another cell according to the arrow and the integer in cell $(i, j)$.
- If the arrow in cell $(i, j)$ points upwards, BaoBao will go on ticking cell $(i-a_{i, j}, j)$ if it exists.
- If the arrow in cell $(i, j)$ points downwards, BaoBao will go on ticking cell $(i+a_{i, j}, j)$ if it exists.
- If the arrow in cell $(i, j)$ points leftwards, BaoBao will go on ticking cell $(i, j-a_{i, j})$ if it exists.
- If the arrow in cell $(i, j)$ points rightwards, BaoBao will go on ticking cell $(i, j+a_{i, j})$ if it exists.
If the cell BaoBao decides to tick does not exist, or if the cell is already ticked, the game ends.
BaoBao is wondering if he can select a proper initial cell, so that he can tick every cell in the grid exactly once before the game ends. Please help him find the answer.
There are multiple test cases. The first line contains an integer $T$, indicating the number of test cases. For each test case:
The first line contains two integers $n$ and $m$ ($1 \le n \times m \le 10^5$), indicating the number of rows and columns of the grid.
For the following $n$ lines, the $i$-th line contains a string $s_i$ consisting of lowercased English letters ($|s_i| = m$, $s_{i, j} \in \{\text{'u' (ascii: 117)}, \text{'d' (ascii: 100)}, \text{'l' (ascii: 108)}, \text{'r' (ascii: 114)}\}$), where $s_{i, j}$ indicates the direction of arrow in cell $(i, j)$.
- If $s_{i, j} = \text{'u'}$, the arrow in cell $(i, j)$ points upwards.
- If $s_{i, j} = \text{'d'}$, the arrow in cell $(i, j)$ points downwards.
- If $s_{i, j} = \text{'l'}$, the arrow in cell $(i, j)$ points leftwards.
- If $s_{i, j} = \text{'r'}$, the arrow in cell $(i, j)$ points rightwards.
For the following $n$ lines, the $i$-th line contains $m$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$), where $a_{i, j}$ indicates the integer in cell $(i, j)$.
It's guaranteed that the sum of $n \times m$ of all test cases does not exceed $10^6$.
For each test case output one line. If BaoBao can find a proper initial cell, print "Yes" (without quotes), otherwise print "No" (without quotes).
题目概要:给定一个地图,每个地图的点给定下一步的方向和步长,问能否寻找到一点,可以遍历整个地图
为了进行操作,我们先将每个点的入度进行统计,先从0入度的点进行一次bfs(因为dfs好写,先写了dfs,看来数据不是很严格),看是否所有点都访问过了,如果有没有访问过的,说明不能遍历,特别的,如果没有0入度的点,说明任一点都可以通达,我们既可以随便dfs,也可以直接判正确
以下代码:
#include <cstdio>
#include <cstring>
#include <queue>
;
char str[MAXN];
int dig[MAXN];
int vis[MAXN];
int ind[MAXN];
int n, m;
void dfs(int x, int y) {
//printf("%d %d\n",x,y);
&& y >= && y <= m && vis[m * (x - ) + y] == false) {
vis[m * (x - ) + y] = true;
) + y];
) + y] == 'u') dfs(x - step, y);
) + y] == 'd') dfs(x + step, y);
) + y] == 'l') dfs(x, y - step);
) + y] == 'r') dfs(x, y + step);
}
}
&& y <= m && y >= )ind[m * (x - ) + y]++;}
void check(int x, int y) {
) + y];
) + y] == 'u') mflag(x - step, y);
) + y] == 'd') mflag(x + step, y);
) + y] == 'l') mflag(x, y - step);
) + y] == 'r') mflag(x, y + step);
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
scanf("%d%d", &n, &m);
;i<=n*m;i++) vis[i]=;
;i<=n;i++) scanf()+m+);
; i <= n; i++)
; j <= m; j++)
scanf() + j]),check(i, j);
,startj=;
; i <= n; i++) {
bool tr = false;
; j <= m; j++) {
) * m + j] == ) {
starti=i,startj=j;
tr = true;
break;
}
}
if (tr) break;
}
dfs(starti,startj);
bool flag = true;
;i<=n*m;i++)
if(!vis[i]) flag=false;
if (flag) printf("Yes\n");
else printf("No\n");
}
;
}
B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest的更多相关文章
- C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest
We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...
- 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛
Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered ...
- 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛
Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...
- 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛
Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...
- 计蒜客 39270.Angel's Journey-简单的计算几何 ((The 2019 ACM-ICPC China Shannxi Provincial Programming Contest C.) 2019ICPC西安邀请赛现场赛重现赛
Angel's Journey “Miyane!” This day Hana asks Miyako for help again. Hana plays the part of angel on ...
- 计蒜客 39268.Tasks-签到 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest A.) 2019ICPC西安邀请赛现场赛重现赛
Tasks It's too late now, but you still have too much work to do. There are nn tasks on your list. Th ...
- The 2019 ACM-ICPC China Shannxi Provincial Programming Contest (西安邀请赛重现) J. And And And
链接:https://nanti.jisuanke.com/t/39277 思路: 一开始看着很像树分治,就用树分治写了下,发现因为异或操作的特殊性,我们是可以优化树分治中的容斥操作的,不合理的情况只 ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元
题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...
- The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set
Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...
随机推荐
- bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)
题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1101 Solved: 380 Des ...
- 【leetcode刷题笔记】Flatten Binary Tree to Linked List
Given a binary tree, flatten it to a linked list in-place. For example,Given 1 / \ 2 5 / \ \ 3 4 6 T ...
- 分享几个高效编写JS 的心得
原则 不要做任何优化除非的确需要优化 任何的性能优化都必须以测量数据为基础,如果你怀疑代码存在性能问题,首先通过测试来验证你的想法.性能优化三问 我还能做哪些工作从而让代码变得更有效率? 流行的J ...
- Wannafly #4 F 线路规划
数据范围252501 劲啊 Q国的监察院是一个神秘的组织. 这个组织掌握了整个Q国的地下力量,监察着Q国的每一个人. 监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只听从其上直接司的命令 ...
- jraiser小结
1 合并小结 jrcpl F:\site\js\app --settings package.settings 上面代码的意思,就是说,根据package.settings文件,来对app文件夹下的所 ...
- java多线程编程核心技术——第四章总结
第一节使用ReentrantLock类 1.1使用ReentrantLock实现同步:测试1 1.2使用ReentrantLock实现同步:测试2 1.3使用Condition实现等待/同步错误用法与 ...
- 微服务学习一 微服务session 管理
集群和分布式架构中: session管理有三种方法: 1: Cookie: 将Session对象保存在Cookie,保存在浏览器端.浏览器发送请求的时候,会把整个session放在请求里一起发送到se ...
- Selenium VS Webdriver
Selenium 是 ThroughtWorks 一个强大的基于浏览器的开源自动化测试工具,它通常用来编写 Web 应用的自动化测试.随着 Selenium 团队发布 Selenium 2(又名 We ...
- JAVAWeb SSH框架 利用POI 导出EXCEL,弹出保存框
导入包这一些不多说,直接贴出关键代码,JSP只要点一个Action链接就行. poi包我是用:poi-3.11-20141221.jar 亲测有效: 效果: Action 类代码: private I ...
- Eclipse中插件的使用:maven /ant /tomcat
一:使用Eclipse构建Maven项目 http://blog.csdn.net/jackgaolei/article/details/11332249 二:Maven介绍,包括作用.核心概念.用法 ...