BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the $j$-th column of the $i$-th row (indicated by $(i, j)$) contains an arrow (pointing either upwards, downwards, leftwards or rightwards) and an integer $a_{i, j}$.

BaoBao decides to play a game with the grid. He will first select a cell as the initial cell and tick it. After ticking a cell (let's say BaoBao has just ticked cell $(i, j)$), BaoBao will go on ticking another cell according to the arrow and the integer in cell $(i, j)$.

  • If the arrow in cell $(i, j)$ points upwards, BaoBao will go on ticking cell $(i-a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points downwards, BaoBao will go on ticking cell $(i+a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points leftwards, BaoBao will go on ticking cell $(i, j-a_{i, j})$ if it exists.
  • If the arrow in cell $(i, j)$ points rightwards, BaoBao will go on ticking cell $(i, j+a_{i, j})$ if it exists.

If the cell BaoBao decides to tick does not exist, or if the cell is already ticked, the game ends.

BaoBao is wondering if he can select a proper initial cell, so that he can tick every cell in the grid exactly once before the game ends. Please help him find the answer.

There are multiple test cases. The first line contains an integer $T$, indicating the number of test cases. For each test case:

The first line contains two integers $n$ and $m$ ($1 \le n \times m \le 10^5$), indicating the number of rows and columns of the grid.

For the following $n$ lines, the $i$-th line contains a string $s_i$ consisting of lowercased English letters ($|s_i| = m$, $s_{i, j} \in \{\text{'u' (ascii: 117)}, \text{'d' (ascii: 100)}, \text{'l' (ascii: 108)}, \text{'r' (ascii: 114)}\}$), where $s_{i, j}$ indicates the direction of arrow in cell $(i, j)$.

  • If $s_{i, j} = \text{'u'}$, the arrow in cell $(i, j)$ points upwards.
  • If $s_{i, j} = \text{'d'}$, the arrow in cell $(i, j)$ points downwards.
  • If $s_{i, j} = \text{'l'}$, the arrow in cell $(i, j)$ points leftwards.
  • If $s_{i, j} = \text{'r'}$, the arrow in cell $(i, j)$ points rightwards.

For the following $n$ lines, the $i$-th line contains $m$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$), where $a_{i, j}$ indicates the integer in cell $(i, j)$.

It's guaranteed that the sum of $n \times m$ of all test cases does not exceed $10^6$.

For each test case output one line. If BaoBao can find a proper initial cell, print "Yes" (without quotes), otherwise print "No" (without quotes).


题目概要:给定一个地图,每个地图的点给定下一步的方向和步长,问能否寻找到一点,可以遍历整个地图

为了进行操作,我们先将每个点的入度进行统计,先从0入度的点进行一次bfs(因为dfs好写,先写了dfs,看来数据不是很严格),看是否所有点都访问过了,如果有没有访问过的,说明不能遍历,特别的,如果没有0入度的点,说明任一点都可以通达,我们既可以随便dfs,也可以直接判正确

以下代码:

#include <cstdio>
#include <cstring>
#include <queue>

;
char str[MAXN];
int dig[MAXN];
int vis[MAXN];
int ind[MAXN];
int n, m;

void dfs(int x, int y) {
    //printf("%d %d\n",x,y);
     && y >=  && y <= m && vis[m * (x - ) + y] == false) {
        vis[m * (x - ) + y] = true;
        ) + y];
        ) + y] == 'u') dfs(x - step, y);
        ) + y] == 'd') dfs(x + step, y);
        ) + y] == 'l') dfs(x, y - step);
        ) + y] == 'r') dfs(x, y + step);
    }
}

 && y <= m && y >= )ind[m * (x - ) + y]++;}

void check(int x, int y) {
    ) + y];
    ) + y] == 'u') mflag(x - step, y);
    ) + y] == 'd') mflag(x + step, y);
    ) + y] == 'l') mflag(x, y - step);
    ) + y] == 'r') mflag(x, y + step);
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        scanf("%d%d", &n, &m);
        ;i<=n*m;i++) vis[i]=;
        ;i<=n;i++) scanf()+m+);
        ; i <= n; i++)
            ; j <= m; j++)
                scanf() + j]),check(i, j);
        ,startj=;
        ; i <= n; i++) {
            bool tr = false;
            ; j <= m; j++) {
                ) * m + j] == ) {
                    starti=i,startj=j;
                    tr = true;
                    break;
                }
            }
            if (tr) break;
        }
        dfs(starti,startj);
        bool flag = true;
        ;i<=n*m;i++)
            if(!vis[i]) flag=false;
        if (flag) printf("Yes\n");
        else printf("No\n");
    }
    ;
}

B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest的更多相关文章

  1. C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest

    We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...

  2. 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛

    Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered  ...

  3. 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛

    Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...

  4. 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛

    Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...

  5. 计蒜客 39270.Angel's Journey-简单的计算几何 ((The 2019 ACM-ICPC China Shannxi Provincial Programming Contest C.) 2019ICPC西安邀请赛现场赛重现赛

    Angel's Journey “Miyane!” This day Hana asks Miyako for help again. Hana plays the part of angel on ...

  6. 计蒜客 39268.Tasks-签到 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest A.) 2019ICPC西安邀请赛现场赛重现赛

    Tasks It's too late now, but you still have too much work to do. There are nn tasks on your list. Th ...

  7. The 2019 ACM-ICPC China Shannxi Provincial Programming Contest (西安邀请赛重现) J. And And And

    链接:https://nanti.jisuanke.com/t/39277 思路: 一开始看着很像树分治,就用树分治写了下,发现因为异或操作的特殊性,我们是可以优化树分治中的容斥操作的,不合理的情况只 ...

  8. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  9. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set

    Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...

随机推荐

  1. ACM学习历程—HDU1030 Delta-wave(数学)

    Description A triangle field is numbered with successive integers in the way shown on the picture be ...

  2. Android的Notification相关设置

    Android手机:三星Galaxy S6 Android版本:Android 7.0 Android系统自带的本地通知会从顶部Pop下来,用来提示用户有新的消息,然后在Notification栏中停 ...

  3. BZOJ1113:[POI2008]PLA

    浅谈栈:https://www.cnblogs.com/AKMer/p/10278222.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?id ...

  4. NBIOT回答

    该部分分享的是物联网各垂直应用领域里,NB-IoT技术的部署,看看适合NB-IoT技术的垂直应用场景有哪些?垂直应用服务商又该如何部署? 1 NB-IoT适合的垂直应用场景有哪些? 2 NB-IoT垂 ...

  5. Azure PIP (Instance Level Public IP)

    微软的Azure平台已经支持Instance Level Public IP功能.当有复杂协议的情况下,需要开启多个端口的情况下,可以考虑开启PIP功能. 先介绍几个概念: VIP – virtual ...

  6. C++STL 库中set容器应用

    #include<iostream> #include<cstdio> #include<set> using namespace std; set<int& ...

  7. 问题15:如何判断字符串a是否以字符串b开头或结尾

    方法一:使用正则表达式的^和$实现 '^000':表示,只匹配字符串的开头,若开头是 '000' ,则返回 ['000'] : '000$':表示,只匹配字符串的结尾,若结尾是 '000' ,则返回 ...

  8. NameNode内存优化---基于缓存相同文件名的方法

    NameNode内存优化---重用相同的文件名      原创文章,转载请注明:博客园aprogramer 原文链接:NameNode内存优化---重用相同的文件名      众所周知,Hadoop集 ...

  9. Uboot启动参数说明

    bootcmd=cp.b 0xc4200000 0x7fc0 0x200000 ; bootm // 倒计时到 0 以后,自动执行的指令 bootdelay=2 baudrate=38400 // 串 ...

  10. mybatis 学习一 总体概述

    mybatis使用起来不复杂,大体上来说,就是将db连接信息,所有的sql语句信息,都放到配置文件里面,然后去读配置信息,根据db信息,创建好session工厂,然后拿到sqlsession回话之后, ...