水库(树形dp)
水库 (树形dp)
R国有n座城市和n-1条长度为1的双向道路,每条双向道路连接两座城市,城市之间均相互连通。现在你需要维护R国的供水系统。你可以在一些城市修建水库,在第i个城市修建水库需要每年c_i的维护费用。对于没有修建水库的城市,如果离它最近的水库的距离为d,那么需要每年t_i的运输费用来保证该城市的用水需求。保证t_i严格递增。你的任务是计算出每年所需要的最小花费。对于10%的数据,\(n<=5\)。对于30%的数据,\(n<=20\)。对于另外40%的数据,\(t_i=i\)。对于100%的数据,\(n<=1000\),\(c_i,t_i<=100000\)。
这可能算是我做的第一道树形dp?i表示以i为根的子树,j表示i的供水依赖于j。k为i的子节点。\(dp[i][j]=t[dis[now][j]]+c[j]+\sum min(dp[k][j]-c[j],best[k])\)。也就是说对于i的子树,要么i和k共用一个水库,要么用的水库不一样。如果是共用水库,说明水库不用重复建,那么建造水库的成本可以省掉。
但是我在思考过程中发现这样一种情况:
这个情况。。hjq大神说可以证明不存在。因为既然j也选了,t也选了,i一定是哪个更近选哪个。所以i一定不会选j。(被自己蠢哭了)
#include <cstdio>
#include <algorithm>
const int maxn=1005, INF=1e9;
class Graph{
public:
struct Edge{
int to, next; Graph *belong;
void set(int x, int y, Graph *g){
to=x; next=y; belong=g; }
Edge& operator ++(){
return *this=belong->edge[next]; }
inline int operator *(){ return to; }
};
void addedge(int x, int y){
edge[++cntedge].set(y, fir[x], this);
fir[x]=cntedge;
}
inline Edge& getlink(int x){ return edge[fir[x]]; }
private:
int cntedge, fir[maxn];
Edge edge[maxn*2];
};
int n, c[maxn], t[maxn];
int f[maxn][maxn], best[maxn];
int dis[maxn][maxn];
Graph g;
void get_dis(int now, int step, int source, int pre){
dis[now][source]=dis[source][now]=step;
Graph::Edge e=g.getlink(now);
for (; *e; ++e) if (*e!=pre)
get_dis(*e, step+1, source, now);
}
void dfs(int now, int par){
Graph::Edge e=g.getlink(now);
for (int j=1; j<=n; ++j) f[now][j]=t[dis[now][j]]+c[j];
for (; *e; ++e){
if (*e!=par) dfs(*e, now);
else continue;
for (int j=1; j<=n; ++j)
f[now][j]+=std::min(f[*e][j]-c[j], best[*e]);
}
for (int j=1; j<=n; ++j)
best[now]=std::min(best[now], f[now][j]);
}
int main(){
scanf("%d", &n);
for (int i=1; i<=n; ++i) scanf("%d", &c[i]);
for (int i=1; i<=n; ++i) scanf("%d", &t[i]);
int x, y;
for (int i=1; i<n; ++i){
scanf("%d%d", &x, &y);
g.addedge(x, y); g.addedge(y, x);
}
for (int i=1; i<=n; ++i) get_dis(i, 0, i, 0);
std::fill(best, best+maxn, INF);
dfs(1, 0);
printf("%d\n", best[1]);
return 0;
}
水库(树形dp)的更多相关文章
- Fire (poj 2152 树形dp)
Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
- hdu1561 The more, The Better (树形dp+背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...
随机推荐
- 十八 Django框架,生成二维码
用Python来生成二维码,需要qrcode模块,qrcode模块依赖Image 模块,所以首先安装这两个模块 生成二维码保存图片在本地 import qrcode img = qrcode.make ...
- json-lib的一些过滤操作
package demo4; import java.io.Serializable; import net.sf.json.JSONString; public class User impleme ...
- 多媒体的框架 - OpenCore框架概述
OpenCore是一个多媒体的框架,从宏观上来看,它主要包含了两大方面的内容:PVPlayer:提供媒体播放器的功能,完成各种音频 (Audio).视频(Video)流的回放(Playback)功能. ...
- 20179203李鹏举 《Linux内核原理与分析》第一周学习笔记
Linux基础入门 一.Linux的基础学习 1.1 Linux的重要基础操作 Linux不同于Windows的纯粹的图形化界面,虽然也有图形桌面的操作但是更多的操作还是通过命令行来进行,当然除了命令 ...
- bzoj 3514: GERALD07加强版 lct+可持久化线段树
题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...
- Poj 1504 Adding Reversed Numbers(用字符串反转数字)
一.题目大意 反转两个数字并相加,所得结果崽反转.反转规则:如果数字后面有0则反转后前面不留0. 二.题解 反转操作利用new StringBuffer(s).reverse().toString() ...
- poj 1517 u Calculate e(精度控制+水题)
一.Description A simple mathematical formula for e is e=Σ0<=i<=n1/i! where n is allowed to go t ...
- VS Code:快捷方式
转于:vscode: Visual Studio Code 常用快捷键 博主:魚魚 更多操作参见官网:https://code.visualstudio.com/docs/getstarted/key ...
- ceph-deploy mon add 失败
ceph-deploy mon add 失败 标签(空格分隔): ceph-deploy 运维 问题描述: 现有集群只有一个mon,需要通过ceph-deploy mon add添加两个mon.在ad ...
- Skyline实现橡皮筋效果绘制矩形框
这种类似于框选的效果用的比较普遍,一般三维平台和GIS平台都提供了支持接口,可是Skyline就是这么傲娇! 思路是这样的:绘制出的矩形框应该是一直与屏幕边框平行的,也就是矩形框的实际旋转角度是等于摄 ...