Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3210    Accepted Submission(s): 1269

Problem Description
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?

 
Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
 
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
 
Sample Input
2
4
1260
 
Sample Output
Scenario #1:
3
Scenario #2:
113

以前留下来的题目,今天才补。

题目大意就是给定n求有多少种x,y的组合 使得1/x+1/y=1/n;

因为x,y都大于n,这样我们可以设y=x+k 那么上边的等式可以化成x=n*n/k+n;

问题变成求有多少种x了,x是整数,多疑k要是n*n的因子才行.

由于任意一个数都可以表示成 n=p1^r1*p2^r2*p3^r3.....pi^ri 这种形式(其中pi是素数),那么因子的数量就是(r1+1)*(r2+1)*(r3+1)....*(ri+1).(因为每种pi可以选择ri个嘛也可以不选)

那么 n*n的因子数呢?  同理可得n*n的因子数为(2*r1+1)*(2*r2+1)*(2*r3+1)....*(2*ri+1)个

/* ***********************************************
Author :guanjun
Created Time :2016/10/9 18:38:22
File Name :hdu1299.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int n;
int prime[];
int vis[];
int num;
void init(){
num=;
memset(vis,,sizeof vis);
int x=sqrt()+;
for(int i=;i<=x;i++){
if(!vis[i]){
prime[++num]=i;
for(int j=i;j<=x;j+=i)vis[j]=;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
init();
int t;
cin>>t;
for(int k=;k<=t;k++){
scanf("%d",&n);
ll ans=;
int p,cnt;
for(int i=;i<=num;i++){
p=prime[i];
cnt=;
if(p*p>n)break;
while(n%p==){
cnt++;
n/=p;
}
ans*=(*cnt+);
}
if(n>)ans*=;
printf("Scenario #%d:\n",k);
printf("%lld\n\n",(ans+)/);
}
return ;
}

真是醉了,筛素数的时候,x=100000和10000是  num会出现诡异的变化....科学事故啊

HDU 1299Diophantus of Alexandria的更多相关文章

  1. hdu Diophantus of Alexandria(素数的筛选+分解)

    Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...

  2. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  3. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. hdu 1299 Diophantus of Alexandria

    1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...

  6. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. 01网页<head></head>常用标记及属性

    网页<head></head>常用标记及属性 <!DOCTYPE html> <html> <head> <!--网页标题--> ...

  2. Python学会之后,一般能拿到多少工资?

    Python在约40年前出现以来,已经有数以千计基于这项技术的网站和软件项目,Python因其独有的特点从众多开发语言中脱颖而出,深受世界各地的开发者喜爱. 随着Python的技术的流行,Python ...

  3. flipt 一个基于golang 的特性工具开发类库

    以前介绍过一个Flagr 的基于golang 的特性功能开发类库(技术雷达推荐),今天看到一个类似也很不错的方案flipt 参考架构 包含的特性 快速,使用golang 编写,同时进行了性能优化 运行 ...

  4. JS设计模式—节流模式的实际应用

    在实际工作中,我们会经常遇到这样的业务场景,比如点击按钮提交表单,点击一次发一次请求,如果快速点击多次会发送多次请求,这样发送了多次请求是我们不愿意看到的.又比如输入框我们输入内容会调搜索的接口,那么 ...

  5. BZOJ 4819 Luogu P3705 [SDOI2017]新生舞会 (最大费用最大流、二分、分数规划)

    现在怎么做的题都这么水了.. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4819 (luogu) https://ww ...

  6. 【04】JSONP 教程

    JSONP 教程 Jsonp(JSON with Padding) 是 json 的一种"使用模式",可以让网页从别的域名(网站)那获取资料,即跨域读取数据. 为什么我们从不同的域 ...

  7. 【Codeforces 466B】Wonder Room

    [链接] 我是链接,点我呀:) [题意] 让你把长为a,宽为b的房间扩大(长和宽都能扩大). 使得它的面积达到6*n 问你最小的能满足要求的面积是多少 输出对应的a和b [题解] 假设a< b ...

  8. Docker学习总结(17)——学会使用Dockerfile

    Docker.Dockerfile.Docker镜像.容器这些都是什么鸟? 老生常谈,再再再--普及一下: Docker: 最早是dotCloud公司出品的一套容器管理工具,但后来Docker慢慢火起 ...

  9. 常见的HTTP状态码(HTTP Status Code)

    HTTP状态码 当使用浏览器访问一个网页时,浏览器会向网页所在服务器发出请求.当浏览器接收并显示网页前,此网页所在的服务器会返回一个包含HTTP状态码的信息头(server header)用以响应浏览 ...

  10. ZooKeeper实现配置中心的实例(原生API实现)(转)

    说明:要实现配置中心的例子,可以选择的SDK有很多,原生自带的SDK也是不错的选择.比如使用I0Itec,Spring Boot集成等. 大型应用通常会按业务拆分成一个个业务子系统,这些大大小小的子应 ...