Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3210    Accepted Submission(s): 1269

Problem Description
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?

 
Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
 
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
 
Sample Input
2
4
1260
 
Sample Output
Scenario #1:
3
Scenario #2:
113

以前留下来的题目,今天才补。

题目大意就是给定n求有多少种x,y的组合 使得1/x+1/y=1/n;

因为x,y都大于n,这样我们可以设y=x+k 那么上边的等式可以化成x=n*n/k+n;

问题变成求有多少种x了,x是整数,多疑k要是n*n的因子才行.

由于任意一个数都可以表示成 n=p1^r1*p2^r2*p3^r3.....pi^ri 这种形式(其中pi是素数),那么因子的数量就是(r1+1)*(r2+1)*(r3+1)....*(ri+1).(因为每种pi可以选择ri个嘛也可以不选)

那么 n*n的因子数呢?  同理可得n*n的因子数为(2*r1+1)*(2*r2+1)*(2*r3+1)....*(2*ri+1)个

/* ***********************************************
Author :guanjun
Created Time :2016/10/9 18:38:22
File Name :hdu1299.cpp
************************************************ */
#include <bits/stdc++.h>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int n;
int prime[];
int vis[];
int num;
void init(){
num=;
memset(vis,,sizeof vis);
int x=sqrt()+;
for(int i=;i<=x;i++){
if(!vis[i]){
prime[++num]=i;
for(int j=i;j<=x;j+=i)vis[j]=;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
init();
int t;
cin>>t;
for(int k=;k<=t;k++){
scanf("%d",&n);
ll ans=;
int p,cnt;
for(int i=;i<=num;i++){
p=prime[i];
cnt=;
if(p*p>n)break;
while(n%p==){
cnt++;
n/=p;
}
ans*=(*cnt+);
}
if(n>)ans*=;
printf("Scenario #%d:\n",k);
printf("%lld\n\n",(ans+)/);
}
return ;
}

真是醉了,筛素数的时候,x=100000和10000是  num会出现诡异的变化....科学事故啊

HDU 1299Diophantus of Alexandria的更多相关文章

  1. hdu Diophantus of Alexandria(素数的筛选+分解)

    Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...

  2. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  3. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. hdu 1299 Diophantus of Alexandria

    1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...

  6. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. Codeforces_768_D_(概率dp)

    D. Jon and Orbs time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  2. 07Microsoft SQL Server View

    Microsoft SQL Server View 1.视图 视图是一个虚拟的表,是表中的数据经过某种筛选后的显示方式,视图由预定义的查询select语句组成. 2.查看视图信息 --查询系统所有视图 ...

  3. for循环,isinstance() 函数

    #isinstance()的运用 #练习: 求值总和以及平均值. str_list = [1,2,3,4,5,6,'a',7,8,9,'b',10,'c'] my_tal = 0 my_var = 0 ...

  4. 【计算几何】二维凸包——Graham's Scan法

    凸包 点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内.右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包. 一组平面上的点, ...

  5. 洛谷——P2047 [NOI2007]社交网络

    P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...

  6. TestNG套件测试(一)

    测试套件是用于测试软件程序的行为或一组行为的测试用例集合. 在TestNG中,我们无法在测试源代码中定义一个套件,但它可以由一个XML文件表示,可以灵活配置要运行的测试. 套件用<suite&g ...

  7. linux命令整理版(拷贝)

    一.文件和目录操作命令 1.pwd 显示当前所在位置 -L 显示逻辑路径,忽略软链接文件 -P 显示物理路径时如果当前目录路径时软链接文件,则会显示软链接对应的源文件 2.cd 切换目录 cd - 回 ...

  8. react入门----(this.state/表单/Ajax)

    1.this.state 组件免不了要与用户互动,React 的一大创新,就是将组件看成是一个状态机,一开始有一个初始状态,然后用户互动,导致状态变化,从而触发重新渲染 UI var TestStat ...

  9. uva 1444 Knowledge for the masses

    uva 1444 Description   You are in a library equipped with bookracks that move on rails. There are ma ...

  10. 【Codeforces 711C】Coloring Trees

    [链接] 我是链接,点我呀:) [题意] 连续相同的数字分为一段 你可以改变其中0为1~m中的某个数字(改变成不同数字需要不同花费) 问你最后如果要求分成恰好k段的话,最少需要多少花费 [题解] dp ...