luogu1641 [SDOI2010]生成字符串
题目大意
把$n$个$1$和$m$个$0$组成字符串,在任意的前$k$个字符中,$1$的个数不能少于$0$的个数。求这样的字符串的个数。$1\leq m\leq n\leq 1000000$。
原始模型
在坐标网格中,规定一个合法的路径如下:1. 起点为$(0, 0)$,终点为$(n, m)$;2. 该路径是个曼哈顿路径;3. 该路径在直线$l:y=x$的下方,且不接触$l$。求合法的路径的种类数。
这类题的入手点在于:所有合法的路径都会经过点$(1,0)$,起点为$(1,0)$终点为$(n,m)$的曼哈顿路径数为$C_{n+m-1}^m$。而我们要在此基础上去除掉中途经过直线$l$的种类数。我们知道,起点为$(0,1)$,终点为$(n,m)$的曼哈顿路径(设组成的集合为$A$)一定经过直线$l$,这个交点最小可以到达$(1,1)$。而所有经过$(1,0)$且不合法的路径(设组成的集合为$B$)必然也经过直线$l$,交点最小为$(1,1)$,所以对于任意一条路径$p\in B$,如果$p'$是$p$把$(0,0)$至与$l$最后一个交点的部分按照直线$l$翻折得到的路径,则$p'\in A$。同理可得$A,B$满足一一映射关系。对于$\forall p'\in A$,其必须要向上走$m-1$步,总共要走$n+m-1$步,所以不合法的情况为$C_{n+m-1}^{m-1}$
综上所述,结果为$C_{n+m-1}^m - C_{n+m-1}^{m-1}$
本题题解
选1相当于向右走一格,选0相当于向上走一格,原先的条件便变成了可接触$l$。咱们把$y=x$改为$y=x+1$,同理可得答案为$C_{n+m}^m - C_{n+m}^{m-1}$。用预处理阶乘、乘法逆元、组合数通项公式等即可求解。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define ll long long
const int MAX_N = 2000010;
const ll P = 20100403;
ll Fact[MAX_N]; void GetFact()
{
Fact[1] = 1;
for (int i = 2; i < MAX_N; i++)
Fact[i] = Fact[i - 1] * i % P;
} ll Mult(ll a, ll b)
{
ll ans = 0;
while (b)
{
if (b & 1)
ans = (ans + a) % P;
a = (a + a) % P;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a);
a = Mult(a, a);
n >>= 1;
}
return ans;
} ll Inv(ll x)
{
return Power(x, P - 2);
} ll C(int n, int r)
{
return Fact[n] * Inv(Fact[r] * Fact[n - r] % P) % P;
} int main()
{
GetFact();
int n, m;
scanf("%d%d", &n, &m);
printf("%lld\n", ((C(m + n, m) - C(m + n, m - 1)) % P + P) % P);
return 0;
}
luogu1641 [SDOI2010]生成字符串的更多相关文章
- Luogu1641 SCOI2010生成字符串(组合数学)
NOI2018冒泡排序的一个子问题. #include<iostream> #include<cstdio> #include<cmath> #include< ...
- C# 生成字符串的 CheckSum
C# 生成字符串的 CheckSum private static string CheckSum(string message) { char[] chars = message.ToCharArr ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
- c# .Net随机生成字符串代码
/// <summary> /// 随机生成字符串 /// </summary> /// <param name="OperationType"> ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- RandomStringUtils工具类(java随机生成字符串)
使用RandomStringUtils可以选择生成随机字符串,可以是全字母,全数字,自定义生成字符等等... 其最基础的方法: 参数解读: count:需要生成的随机串位数 letters:只要字母 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- java代码中fastjson生成字符串和解析字符串的方法和javascript文件中字符串和json数组之间的转换方法
1.java代码中fastjson生成字符串和解析字符串的方法 List<TemplateFull> templateFulls = new ArrayList<TemplateFu ...
- BZOJ1856 [SCOI2010]生成字符串 【组合数】
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...
随机推荐
- 初步认识MVC
一丶路由(One) 自定义路由,静态路由,动态路由,组合路由 routes.MapRoute 二丶Action向View传值的四种方式(ViewData.ViewBag.TempData.Model ...
- 3D NAND闪存是个啥?让国内如此疯狂
Repost: https://news.mydrivers.com/1/477/477251.htm 上个月底武汉新芯科技主导的国家级存储器产业基地正式动工,在大基金的支持下该项目将投资240亿美元 ...
- 浅析Oracle中的不等于号
前几天碰到一个关于Oracle不等于的问题,最后搜索了一下,发现下面资料,拿来跟大家分享一下,需要的朋友可以参考下 关于Oracle中的不等于号: 在Oracle中, <> != ...
- C++输入输出重载
#include <iostream> using namespace std; class Complex2 { public: Complex2(, ) :_x(x), _y(y){ ...
- ch12 GUI
<Head First Java 2nd Edition> 摘录 JFrame 代表屏幕上的一个窗口,可以把 buttons, checkboxes, test fields 等等界面相关 ...
- 基于XML文档的声明式事务配置
<!-- 配置事务切面 --> <aop:config> <aop:pointcut expression="execution(* com.atguigu.t ...
- nyoj 63 小猴子下落
小猴子下落 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 有一颗二叉树,最大深度为D,且所有叶子的深度都相同.所有结点从左到右从上到下的编号为1,2,3,····· ...
- 用xshell5连接虚拟机,显示Could not connect to '192.168.3.128' (port 22): Connection failed.
原因:虚拟机上没有安装或者没有启动ssh 解决: 1.安装sshserver sudo apt-get install openssh-server 2.启动ssh服务 sudo service ss ...
- PatentTips - Method for booting a host device from an MMC/SD device
FIELD OF THE INVENTION The present invention relates to a memory device and especially to the interf ...
- kendo grid 点击更新没有反映
因为没有在dataSource上写schema schema: { model: { id: "DeptId", fields: { CompanyId: { editable: ...