Clone Graph

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.

OJ's undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

Visually, the graph looks like the following:

       1
/ \
/ \
0 --- 2
/ \
\_/

这题只需一边遍历一遍复制就可以了。

因此至少可以用三种方法:

1、广度优先遍历(BFS)

2、深度优先遍历(DFS)

2.1、递归

2.2、非递归

解法一:广度优先遍历

变量说明:

映射表m用来保存原图结点与克隆结点的对应关系。

映射表visited用来记录已经访问过的原图结点,防止循环访问。

队列q用于记录广度优先遍历的层次信息。

 /**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if(node == NULL)
return NULL;
// map from origin node to copy node
unordered_map<UndirectedGraphNode *, UndirectedGraphNode *> m;
unordered_map<UndirectedGraphNode *, bool> visited;
queue<UndirectedGraphNode*> q;
q.push(node);
while(!q.empty())
{// BFS
UndirectedGraphNode* front = q.front();
q.pop(); if(visited[front] == false)
{
visited[front] = true; UndirectedGraphNode* cur;
if(m.find(front) == m.end())
{
cur = new UndirectedGraphNode(front->label);
m[front] = cur;
}
else
{
cur = m[front];
}
for(int i = ; i < front->neighbors.size(); i ++)
{
if(m.find(front->neighbors[i]) == m.end())
{
UndirectedGraphNode* nei = new UndirectedGraphNode(front->neighbors[i]->label);
m[front->neighbors[i]] = nei;
cur->neighbors.push_back(nei); q.push(front->neighbors[i]);
}
else
{
cur->neighbors.push_back(m[front->neighbors[i]]);
}
}
}
}
return m[node];
}
};

解法二:递归深度优先遍历(DFS)

 /**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
map<UndirectedGraphNode *, UndirectedGraphNode *> m; UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node)
{
if(node == NULL)
return NULL; if(m.find(node) != m.end()) //if node is visited, just return the recorded nodeClone
return m[node]; UndirectedGraphNode *nodeClone = new UndirectedGraphNode(node->label);
m[node] = nodeClone;
for(int st = ; st < node->neighbors.size(); st ++)
{
UndirectedGraphNode *temp = cloneGraph(node->neighbors[st]);
if(temp != NULL)
nodeClone->neighbors.push_back(temp);
}
return nodeClone;
}
};

解法三:非递归深度优先遍历(DFS)

深度优先遍历需要进行邻居计数。如果邻居已经全部访问,则该节点访问完成,可以出栈,否则就要继续处理下一个邻居。

 /**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/ struct Node
{
UndirectedGraphNode *node;
int ind; //next neighbor to visit
Node(UndirectedGraphNode *n, int i): node(n), ind(i) {}
}; class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if(node == NULL)
return NULL;
// map from origin node to copy node
unordered_map<UndirectedGraphNode *, UndirectedGraphNode *> m;
unordered_map<UndirectedGraphNode *, bool> visited;
stack<Node*> stk;
Node* newnode = new Node(node, );
stk.push(newnode);
visited[newnode->node] = true;
while(!stk.empty())
{// DFS
Node* top = stk.top();
UndirectedGraphNode* topCopy;
if(m.find(top->node) == m.end())
{
topCopy = new UndirectedGraphNode(top->node->label);
m[top->node] = topCopy;
}
else
topCopy = m[top->node]; if(top->ind == top->node->neighbors.size())
//finished copying its neighbors
stk.pop();
else
{
while(top->ind < top->node->neighbors.size())
{
if(m.find(top->node->neighbors[top->ind]) == m.end())
{
UndirectedGraphNode* neiCopy = new UndirectedGraphNode(top->node->neighbors[top->ind]->label);
m[top->node->neighbors[top->ind]] = neiCopy;
topCopy->neighbors.push_back(neiCopy);
if(visited[top->node->neighbors[top->ind]] == false)
{
visited[top->node->neighbors[top->ind]] = true;
Node* topnei = new Node(top->node->neighbors[top->ind], );
stk.push(topnei);
}
top->ind ++;
break;
}
else
{
topCopy->neighbors.push_back(m[top->node->neighbors[top->ind]]);
top->ind ++;
}
}
}
}
return m[node];
}
};

转自:http://www.cnblogs.com/ganganloveu/p/4119462.html

133. Clone Graph (3 solutions)——无向无环图复制的更多相关文章

  1. 【LeetCode】133. Clone Graph (3 solutions)

    Clone Graph Clone an undirected graph. Each node in the graph contains a label and a list of its nei ...

  2. 133. Clone Graph 138. Copy List with Random Pointer 拷贝图和链表

    133. Clone Graph Clone an undirected graph. Each node in the graph contains a label and a list of it ...

  3. leetcode 133. Clone Graph ----- java

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  4. 133. Clone Graph

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  5. 133. Clone Graph(图的复制)

    Given the head of a graph, return a deep copy (clone) of the graph. Each node in the graph contains ...

  6. 133. Clone Graph (Graph, Map; DFS)

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  7. Graph 133. Clone Graph in three ways(bfs, dfs, bfs(recursive))

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  8. Java for LeetCode 133 Clone Graph

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  9. [LeetCode] 133. Clone Graph 克隆无向图

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

随机推荐

  1. Action的实现方式

    [Pojo方式] 1.概述 Pojo(Plain Ordinary Java Object)称为简单Java类,其实就是一个JavaBean. 2.示例 /** * Pojo类方式实现Action * ...

  2. android 之 service

    在Activity中设置两个按钮,分别为启动和关闭Service: bt01.setOnClickListener(new Button.OnClickListener() { @Override   ...

  3. 解决- RuntimeWarning: Parent module '...' not found while handling absolute import

    Pycharm 升级到 2016.3 以后运行 unittest 报警告如下: 网上查资料说是pycharm的一个已知但未修复的bug,解决办法如下: 使用旧的utrunner.py替换新的utrun ...

  4. [LoadRunner]LR性能测试结果样例分析

    R性能测试结果样例分析 测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要.并发数.平均事务响应时间.每秒点击数.业务成功率.系统资源.网页细分图.Web服务器资源. ...

  5. php增加

    <?php$lname = $_POST['lname'];$name = $_POST['name'];$number = $_POST['number'];$dod = $_POST['do ...

  6. ASP.NET(三):整体总结

    导读:经过一段时间的学习,我的ASP.NET也算是结束了.在这个过程中,总结了它的六大对象,现在先做个总体的总结,然后还会总结一下真假分页的情况.只有总结才能收获.ASP.net严格说起来,其实在VB ...

  7. lvs+keepalive主从和主主架构

    下面配置主从 1)关闭SELinux和防火墙 vi /etc/sysconfig/selinux SELINUX=disabled setenforce 临时关闭SELinux,文件配置后,重启生效 ...

  8. 虚拟机搭建--hyper-V使用教程

    http://jingyan.baidu.com/article/4e5b3e19695d9f91901e24bb.html

  9. 【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)

    题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个 ...

  10. MVC 上传文件的方法

    这两天又开始研究MVC了,期间断断续续已经搞了好久了,可是都没坚持下来.囧!这次一定坚持搞出来一个名堂. 废话少说,直接上代码. 前台引擎采用Razor @model System.Web.HttpP ...