bzoj1089严格n元树——DP+高精度
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089
f[d]为深度小于等于d的树的个数;
从根节点出发,有n个子树,乘法原理可以得到 f[d] = f[d-1] ^ n + 1 ,加1是因为也可以没有根节点;
需要高精度,直接重载运算符十分方便。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int const rad=;
int n,d;
struct data{
int v[],l;
}f[];
data operator*(data a,data b)
{
data c;
for(int i=;i<=a.l+b.l;i++)c.v[i]=;
for(int i=;i<=a.l;i++)
for(int j=;j<=b.l;j++)
c.v[i+j-]+=a.v[i]*b.v[j];
c.l=a.l+b.l;
for(int i=;i<=c.l;i++)
{
if(c.v[i]>=rad)
{
if(i==c.l)
{
c.l++;
c.v[c.l]=c.v[i]/rad;
}
else c.v[i+]+=c.v[i]/rad;
c.v[i]%=rad;
}
}
while(c.v[c.l]==&&c.l>)c.l--;
return c;
}
data operator^(data a,int n)
{
data c;
c.l=;c.v[]=;
while(n)
{
if(n&)c=c*a;
a=a*a;
n>>=;
}
return c;
}
data operator+(data a,int x)
{
a.v[]+=x;
int now=;
while(a.v[now]>=rad)a.v[now+]+=a.v[now]/rad,a.v[now]%=rad,now++;
a.l=max(a.l,now);
return a;
}
data operator-(data a,data b)
{
for(int i=;i<=a.l;i++)
{
a.v[i]-=b.v[i];
if(a.v[i]<)
{
a.v[i]+=rad;
a.v[i+]--;
}
}
while(a.v[a.l]==&&a.l>)a.l--;
return a;
}
//void print(data a)
//{
// for(int i=a.l;i;i--)
// printf("%d",a.v[i]);
//}
void print(data a)
{
printf("%d",a.v[a.l]);
for(int i=a.l-;i;i--)
printf("%03d",a.v[i]);
printf("\n");
}
int main()
{
scanf("%d%d",&n,&d);
if(d==)
{
printf("");return ;
}
f[].l=;f[].v[]=;
for(int i=;i<=d;i++)
f[i]=(f[i-]^n)+;//+ 必须加括号!!!
print(f[d]-f[d-]);
return ;
}
bzoj1089严格n元树——DP+高精度的更多相关文章
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度
题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...
- P4295 [SCOI2003]严格N元树 DP
思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...
- [bzoj1089]严格n元树
设f[i]表示深度不超过i的方案数,那么有f[0]=1,$f[i]=f[i-1]^{n}+1$,然后用高精度即可(注意深度恰好为d还要用f[d]-f[d-1]才是答案) 1 #include<b ...
- bzoj1089严格n元树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 这是一种套路:记录“深度为 i ”的话,转移需要讨论许多情况:所以可以记录成“深度&l ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
随机推荐
- Java主线程等待所有子线程执行完毕再执行解决办法(转)
方法一: Thread.join()方法,亲测可行,thread.join()方法 Vector<Thread> ts = new Vector<Thread>(); for ...
- R12: How to add Microsoft Excel as Type to the Create Template List of Values in BI Publisher (Doc ID 1343225.1)
Modified: 27-Oct-2013 Type: HOWTO In this Document Goal Solution References APPLIES TO: BI Publisher ...
- Action Bar详解(二)
在Android3.0之后,Google对UI导航设计上进行了一系列的改革,其中有一个非常好用的新功能就是引入的ActionBar,他用于取代3.0之前的标题栏,并提供更为丰富的导航效果. 一.添加A ...
- 创建注记图层C# IFeatureWorkspaceAnno
http://blog.csdn.net/mydriverc/article/details/1675613 //IFeatureWorkspaceAnno Example //The ...
- poj1870--Bee Breeding(模拟)
题目链接:点击打开链接 题目大意:给出一个蜂窝,也就是有六边形组成,从内向外不断的循环(如图).给出两个数的值u,v按六边形的走法,由中心向六个角走.问由u到v的的最小步数. 首先处理处每个数的坐标, ...
- PHP中文分词扩展 SCWS
1.scws简单介绍 SCWS 是 Simple Chinese Word Segmentation 的首字母缩写(即:简易中文分词系统). 这是一套基于词频词典的机械式中文分词引擎,它能将一整段的中 ...
- 嵌入式学习笔记(综合提高篇 第二章) -- FreeRTOS的移植和应用
1.1 资料准备和分析 上章节通过实现双机通讯,了解如何设计和实现自定义协议,不过对于嵌入式系统来说,当然不仅仅包含协议,还有其它很多需要深入学习了解的知识,下面将列出我在工作和学习上遇到的嵌入 ...
- China Vis 2015 会议小结
China Vis 2015 Paper有6个分会场.主要有 1.天气.气象.灾害可视化. 2.文本可视化应用: 3.树.网络.以及高维技术. 4.时空分析. 5.科学可视化与应用: 五个方面主题. ...
- Java单例的实现
1.声明实例变量(静态) 2.私有化构造函数 3.创建获取实例的方法 public class Singleton{ //创建实例变量 private static Singleton singlet ...
- VS2008转VS2013时遇到的问题
最近我们要把DPM进行行人检测嵌入到我们的项目里,需要一个高级版本的VS,于是我们要把2008转换成2013,至于为什么没有换成最高级的版本,可能担心会遇到有更多的麻烦吧,毕竟我们的DPM源码是在20 ...