传送门

rqy是我们的红太阳没有它我们就会死

可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程

\[f[i][j]=min(f[i/k][j-1]\times p_j^{k-1})
\]

这玩意儿肯定是不能高精dp的……于是看到乘法就想到对数……根据对数的基本定理,有

\[log\ n=\sum c_i\ log\ p_i
\]

那么我们可以改一下转移

\[f[i][j]=min(f[i/k][j-1]+ (k-1)log\ p_j)
\]

然后算出最后的答案之后倒着找一下转移的方向高精乘回去就是了

因为没有写eps于是调了一个小时都找不出错我再也不偷懒不写eps了QAQ

//minamoto
#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const double min(const double &x,const double &y){return x<y?x:y;}
const int p[]={
2, 3, 5, 7, 11,
13, 17, 19, 23, 29,
31, 37, 41, 43, 47,
53, 59, 61, 67, 71
};double Log[25],f[505][25];int d[505],n,tot,len,A[100005],pos;
void mul(int x){
int add=0;
fp(i,1,len)A[i]=A[i]*x+add,add=A[i]/10,A[i]%=10;
while(add)A[++len]=add%10,add/=10;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);fp(i,1,n)if(n%i==0)d[++tot]=i;
fp(i,0,19)f[0][i]=0;fp(i,0,19)Log[i]=log(p[i]);
fp(i,2,tot){
fp(k,0,19)f[i][k]=1e9;
fp(j,1,i-1)if(d[i]%d[j]==0){
int t=d[i]/d[j];
fp(k,1,19)f[i][k]=min(f[i][k],f[j][k-1]+Log[k-1]*(t-1));
}
}A[1]=len=1;
fp(i,0,19)if(f[tot][i]<f[tot][pos])pos=i;
for(register int i=tot,nxt;i>1;i=nxt,--pos){
for(nxt=1;d[i]%d[nxt]||f[i][pos]<f[nxt][pos-1]+Log[pos-1]*(d[i]/d[nxt]-1)-1e-5;++nxt);
// for(nxt=1;d[i]%d[nxt]||f[i][pos]<f[nxt][pos-1]+Log[pos-1]*(d[i]/d[nxt]-1)-1e-5;++nxt);
fp(k,1,d[i]/d[nxt]-1)mul(p[pos-1]);
}
while(len--)printf("%d",A[len+1]);return 0;
}

P1128 [HNOI2001]求正整数的更多相关文章

  1. luogu P1128 [HNOI2001]求正整数 dp 高精度

    LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...

  2. 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数

    // 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...

  3. BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...

  4. bzoj1225 [HNOI2001] 求正整数

    1225: [HNOI2001] 求正整数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 313[Submit][Statu ...

  5. 【BZOJ】1225: [HNOI2001] 求正整数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...

  6. [HNOI2001]求正整数

    题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...

  7. BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数

    题意:给定n求,有n个因子的最小正整数. 题解:水题,zcr都会,我就不说什么了. 因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子, (1+p1 ...

  8. [HNOI2001] 求正整数 - 背包dp,数论

    对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...

  9. 求正整数n所有可能的和式的组合(如;4=1+1+1+1、1+1+2、1+3、2+1+1、2+2

    作者:张小二 nyoj90 ,可以使用递归的方式直接计算个数,也可以通过把满足的个数求出来计数,因为在juLy博客上看到整数划分,所以重写了这个代码,就是列出所m的可能性,提交后正确.acmer的入门 ...

随机推荐

  1. Leetcode 213.大家劫舍II

    打家劫舍II 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的防盗系统,如果两 ...

  2. EditText隐藏和显示

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  3. poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

    http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...

  4. 2017-10-03-morning

    #include <algorithm> #include <cstring> #include <cstdio> inline void read(int &am ...

  5. POJ—— 2117 Electricity

    Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5620   Accepted: 1838 Descr ...

  6. 洛谷 P3456 [POI2007]GRZ-Ridges and Valleys

    P3456 [POI2007]GRZ-Ridges and Valleys 题意翻译 给定一个地图,为小朋友想要旅行的区域,地图被分为n*n的网格,每个格子(i,j) 的高度w(i,j)是给定的.若两 ...

  7. Apple Swift编程语言新手教程

    文件夹 1   简单介绍 2   Swift入门 3   简单值 4   控制流 5   函数与闭包 6   对象与类 7   枚举与结构 1   简单介绍 今天凌晨Apple刚刚公布了Swift编程 ...

  8. log4j 具体解释

    通常,我们都提供一个名为 log4j.properties的文件.在第一次调用到Log4J时,Log4J会在类路径(../web-inf/class/当然也能够放到其他不论什么文件夹.仅仅要该文件夹被 ...

  9. Mariadb 事务

    事务 事务具有ACID特性:原子性(A,atomicity).一致性(C,consistency).隔离性(I,isolation).持久性(D,durabulity). 1.原子性:事务内的所有操作 ...

  10. C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 VC中进程与进程之间共享内存 .net环境下跨进程、高频率读写数据 使用C#开发Android应用之WebApp 分布式事务之消息补偿解决方案

    C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing). ...