Portal --> loj6059

Solution

​​  看过去第一反应是。。大力数位dp!然后看了一眼数据范围。。。

​  但是这没有什么关系!注意到我们不需要考虑前导零了,可以直接快乐dp

​  状态还是能继续用的,记\(f[i][j][k]\)表示从左往右数的前\(i\)位,(假装后面没有数位的情况下)模\(p\)余\(j\),数字和为\(k\)

​  然后。。\(n\)特别大所以我们考虑。。倍增求解,考虑从\(\lfloor\frac{i}{2}\rfloor\)转移到\(i\):

\[f[\lfloor\frac{i}{2}\rfloor][x][j]*f[\lfloor\frac{i}{2}\rfloor][y][k]\rightarrow f[i][x+y][(j+10^w*k)\%p]
\]

​  这个\(w\)的话就是。。\(\lfloor\frac{i}{2}\rfloor\)

​​  但是如果说\(i\)是奇数怎么办呢?其实只要在这样转移完了之后再暴力枚举一下最高位是啥就好了(现在是相当于得到了一个\(i-1\)位的数嘛)

​​  然后发现因为\(p\)和\(m\)都比较小,所以我们可以直接枚举,而第二维的那个\(f[][x][j]*f[][y][k]\rightarrow f[][x+y][]\)的是一个卷积的形式,我们可以用NTT来优化

​​  具体的话其实感觉跟这题的处理有点像【Portal -->Lcm】,也是我们先将\(f[i][x]\)DFT(NTT)一下之后就可以随便搞事了,也就是相当于第二维和第三维在某种意义上独立了,然后我们可以将转移分开处理(先搞第二维的转移,再暴力枚举第三维的转移)

​  至于倍增的话。。递归就好了,边界的话就是\(i=0\)的情况

​​  因为中间要快乐NTT所以一定要记得相关数组清空

​  

​​  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MOD=998244353,N=3010,M=3010,NT=N*4,TOP=11,G=3;
int f[N][M],g[N][M];
int n,m,p,ans;
int mul(int x,int y){return 1LL*x*y%MOD;}
int add(int x,int y){return (1LL*x+y)%MOD;}
int ksm(int x,int y){
int ret=1,base=x;
for (;y;y>>=1,base=mul(base,base))
if (y&1) ret=mul(ret,base);
return ret;
}
namespace NTT{/*{{{*/
int A[NT],B[NT],W[NT][2],rev[NT];
int len,invlen,invg;
void get_len(int n,int m){
for (int i=0;i<len;++i) A[i]=B[i]=0;
int bit=0;
for (len=1;len<=n+m;len<<=1,++bit);
rev[0]=0;
for (int i=1;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
invlen=ksm(len,MOD-2);
}
void init(int n){
invg=ksm(G,MOD-2);
for (int i=1;i<=TOP;++i){
W[1<<i][0]=ksm(G,(MOD-1)/(1<<i));
W[1<<i][1]=ksm(invg,(MOD-1)/(1<<i));
}
get_len(n,n);
}
void ntt(int *a,int op){
int w,w_n,u,v;
for (int i=0;i<len;++i) if (rev[i]>i) swap(a[i],a[rev[i]]);
for (int step=2;step<=len;step<<=1){
w_n=W[step][op==-1];
for (int st=0;st<len;st+=step){
w=1;
for (int i=0;i<(step>>1);++i){
v=mul(a[st+i+(step>>1)],w);
u=a[st+i];
a[st+i]=add(u,v);
a[st+i+(step>>1)]=add(u,MOD-v);
w=mul(w,w_n);
}
}
}
if (op==1) return;
for (int i=0;i<len;++i) a[i]=mul(a[i],invlen);
}
}/*}}}*/
int work(int n){
if (!n) return 1;
int mi=work(n>>1);
for (int i=0;i<p;++i)
NTT::ntt(g[i],1);
for (int i=0;i<p;++i)
for (int j=0;j<p;++j)
for (int k=0;k<NTT::len;++k)
f[(i+j*mi%p)%p][k]=add(f[(i+j*mi%p)%p][k],mul(g[i][k],g[j][k]));
for (int i=0;i<p;++i)
for (int j=0;j<NTT::len;++j)
g[i][j]=0;
for (int i=0;i<p;++i){
NTT::ntt(f[i],-1);
for (int j=0;j<m;++j) g[i][j]=f[i][j];
for (int j=0;j<NTT::len;++j) f[i][j]=0;
}
mi=mi*mi%p;
if (n&1){
for (int i=0;i<p;++i)
for (int x=0;x<10;++x)
for (int j=0;j+x<m;++j)
f[(i+x*mi%p)%p][j+x]=add(f[(i+x*mi%p)%p][j+x],g[i][j]);
for (int i=0;i<p;++i)
for (int j=0;j<m;++j)
g[i][j]=f[i][j],f[i][j]=0;
mi=mi*10%p;
}
return mi;
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d%d",&n,&p,&m);
g[0][0]=1; ++m;
NTT::init(m);
work(n);
ans=0;
for (int i=0;i<m;++i){
ans=add(ans,g[0][i]);
printf("%d ",ans);
}
}

【loj6059】Sum的更多相关文章

  1. 【BZOJ3944】Sum(杜教筛)

    [BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...

  2. 【CF914G】Sum the Fibonacci 快速??变换模板

    [CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...

  3. 【BZOJ4262】Sum 单调栈+线段树

    [BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...

  4. 【POJ1707】【伯努利数】Sum of powers

    Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...

  5. 【leetcode】Sum Root to Leaf Numbers(hard)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  6. 【LeetCode】Sum of Two Integers

    问题描述: Calculate the sum of two integers a and b, but you are not allowed to use the operator + and - ...

  7. 【POJ2739】Sum of Consecutive Prime Numbers

    简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...

  8. 【LeetCode】Sum Root to Leaf Numbers

    题目 Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a num ...

  9. 【leetcode74】Sum of Two Integers(不用+,-求两数之和)

    题目描述: 不用+,-求两个数的和 原文描述: Calculate the sum of two integers a and b, but you are not allowed to use th ...

随机推荐

  1. 车架号识别,VIN码识别 助力汽车后市场

    又有一家汽配圈新贵引入了小译家的 车架号识别(VIN码识别)技术 那就是明觉科技 是一个服务于汽车后市场 集数据服务.行业数据挖掘 及“互联网+”为一体的汽配信息协作平台 旗下拥有一款全车零配件信息智 ...

  2. 《图解 HTTP 》阅读 —— 第四章

    第4章 返回结果的HTTP状态码 1XX 接收的请求正在处理 2XX 请求被处理 200 请求成功 204 请求成功,但是没有返回数据 206 客户端进行了范围请求 3XX 重定向 301 永久性重定 ...

  3. CsvHelper文档-5配置

    CsvHelper文档-5配置 CsvHelper库被设计成快速且简单易用,但是有时候默认的是设置不符合要求,需要你自己改变一些东西.所以csvHelper内置了很多自定义设置选项来改变读写行为.特别 ...

  4. 【python 3.6】python读取json数据存入MySQL(一)

    整体思路: 1,读取json文件 2,将数据格式化为dict,取出key,创建数据库表头 3,取出dict的value,组装成sql语句,循环执行 4,执行SQL语句 #python 3.6 # -* ...

  5. leetcode个人题解——#33 Search in Rotated Sorted Array

    思路:每次取中间元素,一定有一半有序,另一半部分有序,有序的部分进行二分查找,部分有序的部分递归继续处理. class Solution { public: ; int middleSearch(in ...

  6. IC设计前后端流程与EDA工具

    IC前端设计(逻辑设计)和后端设计(物理设计)的区分: 以设计是否与工艺有关来区分二者:从设计程度上来讲,前端设计的结果就是得到了芯片的门级网表电路. 前端设计的流程及使用的EDA工具 1.架构的设计 ...

  7. 冲刺ing-6

    第六次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 Leangoo的看板截图,燃尽图 蔺皓雯 编写博客,界面设计 蔡晨旸 界面设计 曾茜 测试 鲁婧楠 学习后端设计 杨池宇 界面设计 成员遇 ...

  8. 软工1816 · Alpha冲刺(9/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 学习jQuery的AJAX部分的基础知识,对web端如何异步获取服务器信息有了 ...

  9. UVA 11270 轮廓线

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33787 题意: 用1*2或2*1的长条把n*m方格铺满的方案数. ...

  10. oracle执行完shutdown immediate后登陆不上了怎么办

    在sqlplus 里登录后使用shutdown immediate 关闭数据库后若没有使用startup重启数据库就退出窗口则会出现下一次重启sqlplus窗口时无法登录的现象,解决方法如下 一.启动 ...