2115: [Wc2011] Xor

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 5380  Solved: 2249
[Submit][Status][Discuss]

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7

1 2 2

1 3 2

2 4 1

2 5 1

4 5 3

5 3 4

4 3 2

Sample Output

6

HINT

Source

 

[Submit][Status][Discuss]

题解:
       好评;
      无向连通图的dfs树有很好的性质  : 只有树边和返祖边(由自己指向自己祖先的边);
      由于是异或,一条树上路径可以任意和环组合还是一条路径;

所以答案是一些小环 ^ 1到n的路径异或和;
      处理每个小环的值线性基贪心;
      20181030

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int N=;
int n,m,vis[N],del[N],hd[N],o;
ll dis[N];
struct Edge{int v,nt; ll w;}E[N];
struct Basis{
ll d[];
Basis(){memset(d,,sizeof(d));}
int cal(ll x){
int re=;
for(int i=;i;i>>=)if(x>>i)re+=i,x>>=i;
return re+;
}
void ins(ll x){
for(int i=cal(x);~i;i--)if(x>>i){
if(!d[i]){d[i]=x;break;}
else x^=d[i];
}
}
ll query(ll x){
for(int i=;~i;i--)if(d[i]){
if((x^d[i])>x)x^=d[i];
}
return x;
}
}A;
char gc(){
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
ll rd(){
ll x=; char c=gc();
while(c<''||c>'')c=gc();
while(c>=''&&c<='')x=(x<<)+(x<<)+c-'',c=gc();
return x;
}
void adde(int u,int v,ll w){
E[o]=(Edge){v,hd[u],w};hd[u]=o++;
E[o]=(Edge){u,hd[v],w};hd[v]=o++;
}
void dfs(int u){
for(int i=hd[u];~i;i=E[i].nt)if(!del[i]){
del[i]=del[i^]=;
int v=E[i].v;
if(!vis[v]){
vis[v]=;
dis[v] = dis[u] ^ E[i].w;
dfs(v);
}else{
A.ins(dis[u]^dis[v]^E[i].w);
}
}
}
int main(){
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
n=rd(); m=rd();
Run(i,,n)hd[i]=-;
Run(i,,m){
int u=rd() , v=rd() ; ll w=rd();
adde(u,v,w);
}
dfs();
cout<<A.query(dis[n])<<endl;
return ;
}//by tkys_Austin;

【bzoj2115】【wc2011】Xor的更多相关文章

  1. 【线性基/神仙题】P4151 [WC2011]最大XOR和路径

    Description 给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和.如果一条边经过多次则计算多次. Input 第一行是两个整数 \(n,m\) 代表点 ...

  2. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  3. 【BZOJ2115】Xor(线性基)

    [BZOJ2115]Xor(线性基) 题面 BZOJ Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si ...

  4. 【洛谷】【线段树+位运算】P2574 XOR的艺术

    [题目描述:] AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的01串. 2. 给定一个范围[ ...

  5. 【Python】【面向对象】

    """# [[面向对象]]#[访问限制]#如果要让内部属性不被外部访问,可加双下划线,编程私有变量.只有内部可以访问,外部不能访问.class Student(objec ...

  6. 【BZOJ】【3668】【NOI2014】起床困难综合症

    贪心 位运算的题……基本都是按位来做的?... 从高位到低位,贪心来搞就可以了…… 这都算不上是数位DP吧= = /****************************************** ...

  7. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  8. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

  9. BZOJ3261 最大异或和 【可持久化trie树】

    题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  10. 【SRM 717 div2 A】 NiceTable

    Problem Statement You are given a vector t that describes a rectangular table of zeroes and ones. Ea ...

随机推荐

  1. oss上传文件0字节

    最近使用oss上传文件,不同项目中使用的版本也不同,之前的都能正常上传,最近因需要添加ObjectMetaData属性,扩展了一个方法,发现上传的文件始终是0字节的,最终跟源码发现conntentLe ...

  2. Jmeter接口测试(一) Jmeter简介

    一.Jmeter介绍 (一)Jmeter简介 Apache JMeter 是 Apache 组织的开放源代码项目,是一个纯 Java 桌面应用,用于压力测试和性能测试.它最初被设计用于 Web 应用测 ...

  3. Java普通编程和Web网络编程准备工作

    一.工具下载 链接:https://pan.baidu.com/s/1geOdq3h 密码:pzl5 二.Java普通编程 解压下载的资料,并按readme.txt安装jdk和Eclipse. 三.J ...

  4. python程序设计——面向对象程序设计:方法

    类中定义的方法分为四类:公有方法,私有方法,静态方法,类方法 公有方法.私有方法都属于对象,私有方法的名字以"__"开始 每个对象都有自己的公有方法和私有方法,这两类方法可以访问属 ...

  5. cinder创建volume的流程-简单梳理

    1. cinder-api接收到创建的请求,入口:cinder.api.v2.volumes.VolumeController#create,该方法主要负责一些参数的重新封装和校验,然后调用cinde ...

  6. [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题

    题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...

  7. Python 数据图表工具的比较

    Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析.数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的工具,发展还是落后一些. 幸运的是,过去 ...

  8. centos上搭建git服务--3

    前言:当我们想要实现几个小伙伴合作开发同一个项目,或者建立一个资源分享平台的时候,GIT就是一个很好的选择.当然,既然是一个共有平台,那么把这个平台放到个人计算机上明显是不合适的,因此就要在服务器上搭 ...

  9. python单元测试之参数化

    paramunittest下载地址:https://pypi.python.org/pypi/ParamUnittest/ 当然我们也可以通过pip install paramunittest方式进行 ...

  10. 20181023-10 Alpha阶段第2周/共2周 Scrum立会报告+燃尽图 07

    作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2290 Scrum master:范靖旋 一.小组介绍 组长:王一可 组员: ...