题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2721

  好久没做数学题了,感觉有些思想僵化,走火入魔了。

  这道题就是求方程$ \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} $的正整数解个数。

  首先我们可以把方程化为$ (x+y)n!=xy $。。。然后就发现搞不出什么了。

  但是我们可以考虑换元,因为显然$ x,y>n $,所以我们设$ y=n!+k $,然后我们就可以把方程化为$ (x+n!+k)n!=x(n!+k) $,接下来去括号并整理得:$ (n!)^{2}+kn!=xk $,于是$ x=\frac{(n!)^{2}}{k}+n! $。

  我们可以发现,$ x,y,n! $都是正整数,因此由$ y=n!+k $且$ y>n $可得$ k $也是正整数,而由$ x=\frac{(n!)^{2}}{k}+n! $可得$ \frac{(n!)^{2}}{k} $是正整数,所以k必为$ (n!)^2 $一因数。并且$ x,y $和$ k $的值是一一对应的,所以问题就变成了求$ (n!)^2 $的因数个数。

  具体做法可以用筛法筛出质数,然后对于每个质数,算出它们的每个幂对答案的贡献。

  代码:

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define ull unsigned long long
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define lowbit(x) (x& -x)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define eps 1e-18
#define maxn 500010
inline ll read()
{
ll tmp=; char c=getchar(),f=;
for(;c<''||''<c;c=getchar())if(c=='-')f=-;
for(;''<=c&&c<='';c=getchar())tmp=(tmp<<)+(tmp<<)+c-'';
return tmp*f;
}
int p[],mn[];
ll cnt[];
int n,tot=;
void eular(int n)
{
mn[]=;
for(int i=;i<=n;i++){
if(!mn[i])p[++tot]=i,mn[i]=tot;
for(int j=;j<=mn[i]&&i*p[j]<=n;j++)mn[i*p[j]]=p[j];
}
//for(int i=1;i<=n;i++)
// if(p[mn[i]]==i)printf("%d\n",i);
}
int main()
{
n=read();
eular(n);
for(int i=;i<=tot;i++){
cnt[i]=;
for(ll j=p[i];j<=n;j*=p[i])cnt[i]+=n/j;
cnt[i]%=mod;
}
ll ans=;
for(int i=;i<=tot;i++)
ans=ans*(cnt[i]*+)%mod;
printf("%lld\n",ans);
return ;
}

bzoj2721

【bzoj2721】[Violet 5]樱花的更多相关文章

  1. 【筛法求素数】【质因数分解】bzoj2721 [Violet 5]樱花

    http://www.cnblogs.com/rausen/p/4138233.html #include<cstdio> #include<iostream> using n ...

  2. BZOJ2721 [Violet 5]樱花

    先令n! = a: 1 / x + 1 / y = 1 / a  =>  x = y * a / (y - a) 再令 k = y - a: 于是x = a + a ^ 2 / k  => ...

  3. 2018.10.26 bzoj2721: [Violet 5]樱花(数论)

    传送门 推一波式子: 1x+1y=1n!\frac 1 x+\frac 1 y=\frac 1 {n!}x1​+y1​=n!1​ =>xy−x∗n!−y∗n!xy-x*n!-y*n!xy−x∗n ...

  4. 【BZOJ2721】[Violet 5]樱花 线性筛素数

    [BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约 ...

  5. BZOJ_2721_[Violet 5]樱花_数学

    BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...

  6. 【BZOJ 2721】 2721: [Violet 5]樱花 (筛)

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 599  Solved: 354 Description Input ...

  7. 2721: [Violet 5]樱花

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 547  Solved: 322[Submit][Status][D ...

  8. bzoj 2721[Violet 5]樱花 数论

    [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 671  Solved: 395[Submit][Status][Discuss ...

  9. Bzoj2721 [Violet]樱花(筛法)

    题面 题解 首先化一下式子 $$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow ( ...

随机推荐

  1. linux下查看服务器软件的编译参数

    1.nginx编译参数: your_nginx_dir/sbin/nginx -V 2.apache编译参数: cat your_apache_dir/build/config.nice 3.php编 ...

  2. Ubuntu16.04安装Elasticsearch

    一.安装工作 wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add - sudo apt-g ...

  3. 【BZOJ1269/1507】[AHOI2006]文本编辑器editor Splay

    [BZOJ1269][AHOI2006]文本编辑器editor Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目 ...

  4. EditPlus轻量级编辑器配置常用的语法规则!

    打开EditPlus编辑器:工具 ---- 参数设置 ---- 文件 ---- 设置&语法: 先配置简单的CSS语法: 勾选下面的 “自动完成” ,加载对应的ACP文件,配置一些常用的语法: ...

  5. R语言NULL、NA、0

    0是假 NULL.NA无法辨认真假 除了以上3个其他的都是真 > if (NULL) print("OK") else print("Error") Er ...

  6. FZU 2105 Digits Count

     Problem 2105 Digits Count Accept: 444    Submit: 2139 Time Limit: 10000 mSec    Memory Limit : 2621 ...

  7. 焦作网络赛L-Poor God Water【矩阵快速幂】

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  8. SQLite随机获取一行数据

    Mysql中随机获取一行数据: SELECT * FROM table ORDER BY RAND() limit 1 SQLite中随机获取一行数据: SELECT * FROM table ORD ...

  9. describe neural networks as a series of computational steps via a directed graph.

    https://www.microsoft.com/en-us/research/product/cognitive-toolkit/ https://github.com/microsoft/cnt ...

  10. SWIG和PInvoke学习(1)

    1. 简介 SWIG是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具. SWIG能应用于各种不同类型的语言包括常用脚本编译语言例如Perl, PHP, Python, ...