GIST特征描述符使用(转)
GIST特征描述符使用
一种场景特征描述
场景特征描述?
通常的特征描述符都是对图片的局部特征进行描述的,以这种思路进行场景描述是不可行的。
比如:对于“大街上有一些行人”这个场景,我们必须通过局部特征辨认图像是否有大街、行人等对象,再断定这是否是满足该场景。但这个计算量无疑是巨大的,且特征向量也可能大得无法在内存中存储计算。
例如即使使用GIST进行1MB的图像数据搜索,也需要3.8GB的RAM空间。
—— Evaluation of GIST descriptors for webscale image search Talk
这迫使我们需要一种更加“宏观”的特征描述方式,从而忽略图片的局部特点。比如:我们无需知道图像中在那些位置有多少人,或者有其他什么对象。
那么应该如何定义一种“宏观”的场景特征描述呢?
我们注意到:
大多数城市看起来就像天空和地面由建筑物外墙紧密连接;大部分高速公路看起来就像一个大表面拉伸天际线,里面充满了凹型(车辆);而森林场景将包括在一个封闭的环境中,有垂直结构作为背景(树),并连接到一定纹理的水平表面(草)。
如此看来,空间包络可以一定程度表征这些信息。
五种空间包络描述
我们定义下列五种对空间包络的描述方法:
- 自然度(Degree of Naturalness):场景如果包含高度的水平和垂直线,这表明该场景有明显的人工痕迹,通常自然景象具有纹理区域和起伏的轮廓。所以,边缘具有高度垂直于水平倾向的自然度低,反之自然度高。
- 开放度(Degree of Openness):空间包络是否是封闭(或围绕)的。封闭的,例如:森林、山、城市中心。或者是广阔的,开放的,例如:海岸、高速公路。
- 粗糙度(Degree of Roughness):主要指主要构成成分的颗粒大小。这取决于每个空间中元素的尺寸,他们构建更加复杂的元素的可能性,以及构建的元素之间的结构关系等等。粗糙度与场景的分形维度有关,所以可以叫复杂度。
- 膨胀度(Degree of Expansion):平行线收敛,给出了空间梯度的深度特点。例如平面视图中的建筑物,具有低膨胀度。相反,非常长的街道则具有高膨胀度。
- 险峻度(Degree of Ruggedness):即相对于水平线的偏移。(例如,平坦的水平地面上的山地景观与陡峭的地面)。险峻的环境下在图片中生产倾斜的轮廓,并隐藏了地平线线。大多数的人造环境建立了平坦地面。因此,险峻的环境大多是自然的。
从而基于这五点对图像进行特征描述。
本文并不准备深入GIST的算法,如想了解具体算法,请参考参考资料1。
MatLab实现
参考资料2提供了一个MatLab实现。
例如通过图片计算GIST特征描述,在使用LMgist的情况下,可以这么写:

% 读取图片
img = imread('demo2.jpg'); % 设置GIST参数
clear param
param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale (from HF to LF)
param.numberBlocks = 4;
param.fc_prefilt = 4; % 计算GIST
[gist, param] = LMgist(img, '', param);

具体请参考参考资料2。
C实现
- 首先在LEAR下载其提供的Lear's GIST implementation。
由于其基于FFTW3(the Faster Fourier Transform in the West),所以我们还需要先安装fftw3。
- 在下载页面下载一个合适的FFTW3版本。
- Linux或者Mac需要在终端运行configure时配置浮点数版本(Windows没试过,不过Lear's GIST implementation的Readme中说明了只能在Linux和Mac上跑,所以Windows安装这个也没有……),即
./configure --enable-single
- 在进行编译:
make
make check
sudo make install
- 编译Lear's GIST implementation
需要将Makefile的:
compute_gist: compute_gist.c gist.o standalone_image.o
gcc -Wall -g -o $@ $^ $(WFFTLIB) -lfftw3f添加-lm,改成:
compute_gist: compute_gist.c gist.o standalone_image.o
gcc -Wall -g -o $@ $^ $(WFFTLIB) -lfftw3f -lm然后:
make
- 将生成compute_gist程序,则可以对PPM图片进行GIST计算。例如在终端输入:
./compute_gist ar.ppm
将会出现960个浮点数,如下:
0.0579 0.1926 0.0933 0.0662 ....
……
.... 0.0563 0.0575 0.0640
注意事项
- 输入图片必须是原始(也就是二进制)的PGM/PPM格式的图片。
- 输入图片的尺寸必须是相同的,否则计算出来的GIST没有什么意义。
- 通过SVM训练来进行图片检测,2001年那篇论文得出83.7%的判断准确度。
参考资料
Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope . Aude Oliva & Antonio Torralba . January 22, 2001
Modeling the shape of the scene: a holistic representation of the spatial envelope DEMO
GIST特征描述符使用(转)的更多相关文章
- GIST特征描述符使用
来源:http://www.cnblogs.com/justany/archive/2012/12/06/2804211.html 一种场景特征描述 场景特征描述? 通常的特征描述符都是对图片的局部特 ...
- 第十六节、特征描述符BRIEF(附源码)
我们已经知道SIFT算法采用128维的特征描述子,由于描述子用的是浮点数,所以它将会占用512字节的空间.类似的SUFR算法,一般采用64维的描述子,它将占用256字节的空间.如果一幅图像中有1000 ...
- 图像GIST特征和LMGIST包的python实现(有github)
1什么是Gist特征 (1) 一种宏观意义的场景特征描述 (2) 只识别"大街上有一些行人"这个场景,无需知道图像中在那些位置有多少人,或者有其他什么对 ...
- BRIEF 特征描述子
Binary Robust Independent Elementary Features www.cnblogs.com/ronny 1. BRIEF的基本原理 我们已经知道SIFT特征采用了128 ...
- SIFT解析(三)生成特征描述子
以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征.下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点. 下面好好说说如何来描述这些 ...
- MPEG-7 视觉描述符
本文节选自<基于MPEG-7与内容的图像检索技术的研究>. MPEG-7 标准中视觉描述工具包括基本结构和描述符.本文主要介绍各描述符. (1)颜色描述符 MPEG-7 主要定义了七种颜色 ...
- SIFT算法原理(3)-确定关键点的主方位,构建关键点描述符
介绍官网:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html ...
- 图像检索:CEDD(Color and Edge Directivity Descriptor)算法 颜色和边缘的方向性描述符
颜色和边缘的方向性描述符(Color and Edge Directivity Descriptor,CEDD) 本文节选自论文<Android手机上图像分类技术的研究>. CEDD具有抽 ...
- ES5 数据属性描述符和存取描述符
一.数据属性描述符 对象是一个属性集合,对象的基本特征是属性名(name)和属性值(value).ES5 增加了属性描述符,可以更细腻的控制属性的不同操作.属性描述符有 configurable.wr ...
随机推荐
- php \r \n 和 <br/> \t
利用\r \n 和 <br/> \t做了个实验,话不多说,看代码就很清楚的知道
- 004-notepad++安装。
1.下载地址. 官网:https://notepad-plus-plus.org/ 2.安装.
- 1:3访问 servlet API 的两种方式(request,session等内置对象)
1:解耦方式 2:耦合方式: ========================================== ========================================== ...
- 20155333 2016-2017-2 《Java程序设计》第七周学习总结
20155333 2016-2017-2 <Java程序设计>第七周学习总结 教材学习内容总结 Lambda 教材的引入循序渐近.深入浅出 Lambda去重复,回忆DRY原则 Lambda ...
- 前端学习笔记之CSS知识汇总
CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...
- 20155201 实验二《Java面向对象程序设计》实验报告
20155201 实验二<Java面向对象程序设计>实验报告 一.实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. ...
- CONFLICT (modify delete)冲突修复
Demo git:(test) git merge feature CONFLICT (modify/delete): path/to/path/config.inc.php deleted in H ...
- 如何解决tensorflow报:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
答:使能AVX,AVX2和FMA来进行源码编译,这样可以提速噢 具体编译方法,请参考windows10下如何进行源码编译安装tensorflow
- 斜率优化DP学习笔记
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...
- c#pdf查看器
Free Spire.PDF for .NET is a Community Edition of the Spire.PDF for .NET, which is a totally free PD ...