4870: [Shoi2017]组合数问题

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 829  Solved: 446
[Submit][Status][Discuss]

Description

Input

第一行有四个整数 n, p, k, r,所有整数含义见问题描述。
1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1

Output

一行一个整数代表答案。

Sample Input

2 10007 2 0

Sample Output

8

HINT

    注意到问题就是求从n*k件物品中选出若干件使得选出的物品的数量%K=R的不同方案个数,f[i][j]表示从前i件物品中选出若干件满足选出物品的数量%K=j的方案个数,有f[i][j]=f[i-1][j]+f[i-1][((j-1)+K)%K],显然利用矩阵幂可以快速转移,注意特判下K=1的情况。由于快速幂传参写的是int,但是N*K可能爆int一直WA最后才发现= =

    

 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define ULL unsigned long long
#define uint unsigned int
#define pii pair<int,int>
#define eps 1e-10
#define inf 0x3f3f3f3f LL N,P,K,R;
LL qpow(LL a,LL b,LL p){
LL r=;
while(b){
if(b&) r=r*a%p;
a=a*a%p;
b>>=;
}
return r;
}
struct matrix{
LL a[][];
matrix(){
memset(a,,sizeof(a));
}
matrix operator*(matrix& tmp){
matrix ans;
for(int i=;i<K;++i){
for(int j=;j<K;++j){
for(int k=;k<K;++k){
(ans.a[i][k]+=a[i][j]*tmp.a[j][k])%=P;
}
}
}
return ans;
}
}A,I;
matrix qpow(matrix X,LL n){
matrix ans=I;
while(n){
if(n&) ans=ans*X;
X=X*X;
n>>=;
}
return ans;
}
int main(){ scanf("%lld%lld%lld%lld",&N,&P,&K,&R);
N*=K;
if(K==){
printf("%lld\n",qpow(,N,P));
}
else{
for(int i=;i<K;++i) I.a[i][i]=;
A.a[][]=A.a[][K-]=;
for(int i=;i<K;++i){
A.a[i][i]=A.a[i][i-]=;
}
matrix ans=qpow(A,N);
printf("%lld\n",ans.a[R][]);
}
return ;
}

bzoj-4870-组合dp+矩阵幂的更多相关文章

  1. POJ-3744-概率dp+矩阵幂(分段)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10214   Accepted: 2980 Desc ...

  2. nyoj1273 河南省第九届省赛_"宣传墙"、状压DP+矩阵幂加速

    宣传墙 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 ALPHA 小镇风景美丽,道路整齐,干净,到此旅游的游客特别多.CBA 镇长准备在一条道路南 面 4*N 的墙上做 ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  5. 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)

    2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...

  6. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  7. CodeForces621E 快速矩阵幂优化dp

    有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...

  8. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  9. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

随机推荐

  1. ZOJ 3209 Treasure Map(精确覆盖)

    Treasure Map Time Limit: 2 Seconds      Memory Limit: 32768 KB Your boss once had got many copies of ...

  2. A Benchmark Comparsion of Monocular Visual-Inertial Odometry Algorithms for Flying Robots论文笔记

    摘要: 本文主要比较单目VIO的算法在飞行机器人上运行的性能,测试使用统一数据集为EuRoC.其中评价指标为:姿态估计精度.每帧处理时间以及CPU和内存负载使用率,同时还有RMSE(运行轨迹与真实轨迹 ...

  3. 0702-spring cloud config-git仓库配置、用户授权

    一.概述 参看地址:https://cloud.spring.io/spring-cloud-static/Edgware.SR3/single/spring-cloud.html#_environm ...

  4. (转)SpringBoot非官方教程 | 第七篇:springboot开启声明式事务

    springboot开启事务很简单,只需要一个注解@Transactional 就可以了.因为在springboot中已经默认对jpa.jdbc.mybatis开启了事事务,引入它们依赖的时候,事物就 ...

  5. 概率图模型PFM——无向图

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdYAAAFPCAIAAAB/EXiGAAAgAElEQVR4nO2df4wl1XXn6/+0VuG/II ...

  6. 单机部署PXC

    在一台机器上安装PXC Linux:centos 7     IP:192.168.30.221 PXC版本:Percona-XtraDB-Cluster-5.7.17-rel13-29.20.3.L ...

  7. [golang note] 接口使用

    侵入式接口 √ 在其他一些编程语言中,接口主要是作为不同组件之间的契约存在,即规定双方交互的规约. √ 对契约的实现是强制的,即必须确保用户的确实现了该接口,而实现一个接口,需要从该接口继承. √ 如 ...

  8. 13信号signal

    信号 传送给进程的事件通知,完成异步通信 信号的产生 1.程序错误:硬件异常,除数为0,等 2.外部事件:定时器事件,按键中断(ctrl+c)等 3.显示请求:调用 kill,  raise 等信号发 ...

  9. 前端学习笔记之CSS网页布局

    CSS网页布局   阅读目录 一 网页布局方式 二 标准流 三 浮动流 四 定位流 一 网页布局方式 #1.什么是网页布局方式 布局可以理解为排版,我们所熟知的文本编辑类工具都有自己的排版方式,比如w ...

  10. PHP Fatal error: Uncaught Error: Call to undefined function pcntl_fork().. 开启php pcntl扩展实现多进程

    在使用函数pcntl_fork()时报错  Fatal error: Uncaught Error: Call to undefined function pcntl_fork()....,原因是没有 ...