俞鼎力大牛的课件

对于原图以 \(t\) 为根建出任意一棵最短路径树 \(T\),即反着从 \(t\) 跑出到所有点的最短路 \(dis\)

它有一些性质:

性质1:

对于一条 \(s\) 到 \(t\) 的路径的边集 \(P\),去掉 \(P\) 中和 \(T\) 的交集,记为 \(P'\)。

那么 \(P'\) 对于中任意相邻(从 \(s\) 到 \(t\) 的顺序)的两条边 \(e,f\),满足 \(f\) 的起点在 \(T\) 中为 \(e\) 的终点的祖先或者为相同点。

因为 \(P\) 中 \(e,f\) 之间由树边相连或者直接相连。

性质2:

对于不在 \(T\) 中的边 \(e\) ,设 \(u\) 为起点,\(v\) 为终点,\(w\)为权值。

定义 \(\Delta_e=dis_v+w-dis_u\),即选这条边的路径和最短路的长度的差

设 \(L_P\) 表示路径长度,则有

\[L_P=dis_s+\sum_{e\in p'}\Delta_e
\]

这很显然。

性质3:

对于满足性质 \(1\) 的 \(P'\)的定义的边集 \(S\),有且仅有一条 \(s\) 到 \(t\) 的路径的边集 \(P\),使得 \(P'=S\)。

因为树 \(T\) 上的两个点之间有且仅有一条路径。

问题转化

求第 \(k\) 小的满足性质 \(1\) 的 \(P'\)的定义的边集

算法

用小根堆维护边集 \(P\)

初始 \(P\) 为空集(实际上只要维护边集当前尾部的边的起点是哪一个就好了,空集即 \(s\))

每次取出最小权值的边集 \(P\),设当前尾部的边的起点为 \(x\)

有两种方法可以得到一个新的边集:

1.替换 \(x\) 为起点的这条边为一条刚好大于等于它的非树边。

2.尾部接上一条起点为以 \(x\) 为起点的这条边的终点在 \(T\) 中祖先(包括自己)连出去的所有非树边的最小边。

然后就是怎么维护祖先出去的所有非树边的最小边:

显然可以从祖先转移过来,直接可并堆即可。

又因为要保留每个点的信息,所以合并的时候可持久化即可

和线段树合并的可持久化一样,然后就可以过了。

建议可以看一看课件

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; template <class Num> inline void Cmax(Num &x, const Num y) {
x = y > x ? y : x;
} template <class Num> inline void Cmin(Num &x, const Num y) {
x = y < x ? y : x;
} const int maxn(5005);
const int maxm(2e5 + 5);
const double eps(1e-8); int n, m, first[maxn], cnt, vis[maxn], rt[maxn], tot, cov[maxm << 1], ans, fa[maxn];
double se, e, dis[maxn];
priority_queue < pair <double, int> > q; struct Heap {
int ls, rs, dis, ed;
double w;
} tr[maxm * 20]; struct Edge {
int to, next;
double w;
} edge[maxm << 1]; inline void Add(int u, int v, double w) {
edge[cnt] = (Edge){v, first[u], w}, first[u] = cnt++;
edge[cnt] = (Edge){u, first[v], w}, first[v] = cnt++;
} inline int NewNode(double w, int ed) {
int x = ++tot;
tr[x].w = w, tr[x].dis = 1, tr[x].ed = ed;
return x;
} int Merge(int x, int y) {
if (!x || !y) return x + y;
if (tr[x].w - tr[y].w >= eps) swap(x, y);
int p = ++tot;
tr[p] = tr[x], tr[p].rs = Merge(tr[p].rs, y);
if (tr[tr[p].ls].dis < tr[tr[p].rs].dis) swap(tr[p].ls, tr[p].rs);
tr[p].dis = tr[tr[x].rs].dis + 1;
return p;
} void Dfs(int u) {
vis[u] = 1;
for (int e = first[u], v; e != -1; e = edge[e].next)
if (e & 1) {
double w = edge[e].w;
if (fabs(dis[u] + w - dis[v = edge[e].to]) < eps && !vis[v])
fa[v] = u, cov[e ^ 1] = 1, Dfs(v);
}
} int main() {
memset(first, -1, sizeof(first));
memset(dis, 127, sizeof(dis));
scanf("%d%d%lf", &n, &m, &se);
for (int i = 1, u, v; i <= m; ++i) scanf("%d%d%lf", &u, &v, &e), Add(u, v, e);
dis[n] = 0, q.push(make_pair(0, n));
while (!q.empty()) {
int u = q.top().second;
q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int e = first[u]; ~e; e = edge[e].next)
if (e & 1) {
int v = edge[e].to;
if (dis[v] - (dis[u] + edge[e].w) >= eps)
q.push(make_pair(-(dis[v] = dis[u] + edge[e].w), v));
}
}
for (int i = 1; i <= n; ++i) vis[i] = 0;
Dfs(n);
for (int e = 0, u, v; e < cnt; e += 2)
if (!cov[e]) {
u = edge[e ^ 1].to, v = edge[e].to;
if (dis[u] == dis[0] || dis[v] == dis[0]) continue;
rt[u] = Merge(rt[u], NewNode(dis[v] + edge[e].w - dis[u], v));
}
for (int i = 1; i <= n; ++i) q.push(make_pair(-dis[i], i));
for (int i = 1, u; i <= n; ++i) {
u = q.top().second, q.pop();
if (fa[u]) rt[u] = Merge(rt[u], rt[fa[u]]);
}
if (dis[1] - se < eps) se -= dis[1], ++ans;
if (rt[1]) q.push(make_pair(-tr[rt[1]].w, rt[1]));
while (!q.empty()) {
int ed = q.top().second;
double cur = q.top().first, w = dis[1] - cur;
if (w - se >= eps) break;
q.pop(), se -= w, ++ans;
for (int i = 0; i < 2; ++i) {
int nxt = i ? tr[ed].rs : tr[ed].ls;
if (nxt) q.push(make_pair(cur + tr[ed].w - tr[nxt].w, nxt));
}
if (rt[tr[ed].ed]) q.push(make_pair(cur - tr[rt[tr[ed].ed]].w, rt[tr[ed].ed]));
}
printf("%d\n", ans);
return 0;
}

Luogu2483 [SDOI2010]魔法猪学院(可并堆)的更多相关文章

  1. Bzoj 1975: [Sdoi2010]魔法猪学院 dijkstra,堆,A*,K短路

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1357  Solved: 446[Submit][Statu ...

  2. BZOJ_1975_[Sdoi2010]魔法猪学院_A*

    BZOJ_1975_[Sdoi2010]魔法猪学院_A* Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPi ...

  3. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  4. [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2748  Solved: 883[Submit][Statu ...

  5. bzoj 1975: [Sdoi2010]魔法猪学院 [k短路]

    1975: [Sdoi2010]魔法猪学院 裸题... 被double坑死了 #include <iostream> #include <cstdio> #include &l ...

  6. bzoj 1975 [Sdoi2010]魔法猪学院

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1758  Solved: 557[Submit][Statu ...

  7. P2483 [SDOI2010]魔法猪学院

    P2483 [SDOI2010]魔法猪学院 摘要 --> 题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世 ...

  8. 【BZOJ1975】[Sdoi2010]魔法猪学院 A*

    [BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...

  9. bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2446  Solved: 770[Submit][Statu ...

随机推荐

  1. HDU-1260-Tickets(线性DP,DP入门)

    Tickets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  2. 部署WSUS服务(一)

    引言:随着网络的发展,我们的生活也越来越离不开网络,但面临的安全威胁也越来越多.像去年爆发的针对Windows系统的勒索病毒(Wanna Cry)和年初爆发的Intel芯片漏洞告诉我们网络威胁时时刻刻 ...

  3. mysql工具——使用mysqlshow查看mysql对象信息,查看mysql表大小

    关键词:查看表大小,mysqlshow mysqlshow --count -uroot -p test

  4. appium Capabilities的各个标签

    今天详解一下Capabilities的各个标签,以后如果用得着可以随时翻阅. General Capabilities 标签 概述 值 automationName 使用引擎 默认为Appium,其中 ...

  5. SpringBoot整合JdbcTemplate连接Mysql

    import java.io.IOException; import javax.sql.DataSource; import org.apache.ignite.IgniteSystemProper ...

  6. 3.1)DFM-塑胶件设计总章

    本章目的:各种塑胶工艺了解,DFM-塑胶件的设计准则是依据哪种工艺. 1.塑胶概念 塑胶的定义(美国塑料工业协会): 塑胶主要由碳.氧.氢和氮及其他有机或无机元素所构成,成品为固体,在制造过程中是熔融 ...

  7. Bluetooth Lowe Energy

    BTL---------- // Wikipedia  --------The first review paper to read when you counterred a new filed . ...

  8. windows下python3.7.2内置venv虚拟环境下pyinstaller错误问题

    起因 开发一直使用python -m venv .pyenv 方式创建虚拟环境,在利用pyinstaller打包发布应用时,出现错误 3178 INFO: Warnings written to C: ...

  9. Scrapyd API的安装

    安装好了Scrapyd之后,我们可以直接请求它提供的API来获取当前主机的Scrapy任务运行状况.比如,某台主机的IP为192.168.1.1,则可以直接运行如下命令获取当前主机的所有Scrapy项 ...

  10. centos7安装多媒体播放器SMPlayer

    转自:https://wiki.centos.org/TipsAndTricks/MultimediaOnCentOS7 http://blog.chinaunix.net/xmlrpc.php?r= ...