bzoj2212
题解:
线段树合并
比较一下哪一种方案的逆序对少
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=;
typedef long long ll;
ll ans,ANS,a[N],cnt,ch[N][],rt[N],cn,CH[N][],sum[N],CNT,n;
void addnew(ll &x,ll l,ll r,ll v)
{
CNT++;x=CNT;
sum[x]++;
if (l==r) return;
ll mid=(l+r)/;
if (v<=mid) addnew(ch[x][],l,mid,v);
else addnew(ch[x][],mid+,r,v);
}
void build(ll &x)
{
cnt++;x=cnt;
scanf("%lld",&a[x]);
if (a[x])
{
addnew(rt[x],,n,a[x]);
return;
}
build(CH[x][]);
build(CH[x][]);
}
ll merge(ll x,ll y)
{
if (!x) return y;
if (!y) return x;
ans+=sum[ch[x][]]*sum[ch[y][]];
ch[x][]=merge(ch[x][],ch[y][]);
ch[x][]=merge(ch[x][],ch[y][]);
sum[x]=sum[ch[x][]]+sum[ch[x][]];
return x;
}
void dfs(ll x)
{
ll lc=CH[x][],rc=CH[x][];
if (a[x]) return;
dfs(lc);dfs(rc);
ll tot=sum[rt[lc]]*sum[rt[rc]];
ans=;
rt[x]=merge(rt[lc],rt[rc]);
ANS+=min(ans,tot-ans);
}
int main()
{
scanf("%lld",&n);
ll root;
build(root);
dfs(root);
printf("%lld",ANS);
}
bzoj2212的更多相关文章
- BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对
原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...
- BZOJ2212 POI2011Tree Rotations(线段树合并)
显然子树内的操作不会对子树外产生影响.于是贪心,若交换之后子树内逆序对减少就交换. 这个东西可以用权值线段树计算.操作完毕后需要对两棵权值线段树合并,这个的复杂度是两棵线段树的重复节点个数.那么总复杂 ...
- BZOJ2212 [Poi2011]Tree Rotations 【线段树合并】
题目链接 BZOJ2212 题解 一棵子树内的顺序不影响其与其它子树合并时的答案,这一点与归并排序的思想非常相似 所以我们只需单独处理每个节点的两棵子树所产生的最少逆序对即可 只有两种情况,要么正序要 ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- BZOJ2212: [Poi2011]Tree Rotations
2212: [Poi2011]Tree Rotations Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 391 Solved: 127[Submi ...
- BZOJ2212 [POI2011] Tree Rotations 【treap】
题目分析: 写的无旋treap应该跑不过,但bzoj判断的总时限.把相关实现改成线段树合并就可以了. 代码: #include<bits/stdc++.h> using namespace ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
- bzoj3702/bzoj2212 二叉树 (线段树合并)
用线段树记每个子树中包含的数,然后合并的时候算出来逆序对的数量(合并a,b时,就是size[ch[a][1]]*size[ch[b][0]]),来决定这个子树要不要翻转 #include<bit ...
- 【BZOJ2212】[POI2011]Tree Rotations (线段树合并)
题解: 傻逼题 启发式合并线段树里面查$nlog^2$ 线段树合并顺便维护一下$nlogn$ 注意是叶子为n 总结点2n 代码: #include <bits/stdc++.h> usin ...
- BZOJ2212或洛谷3521 [POI2011]ROT-Tree Rotations
BZOJ原题链接 洛谷原题链接 线段树合并裸题. 因为交换子树只会对子树内部的逆序对产生影响,所以我们计算交换前的逆序对个数和交换后的个数,取\(\min\)即可. 对每个叶子节点建一棵动态开点线段树 ...
随机推荐
- Python开发【Django】:路由规则
Django路由规则 1.基于正则的URL 在templates目录下创建index.html.detail.html文件 <!DOCTYPE html> <html lang=&q ...
- django-mvc
而对于真实开发中的python web程序来说,一般会分为两部分:服务器程序和应用程序.服务器程序负责对socket服务器进行封装,并在请求到来时,对请求的各种数据进行整理.应用程序则负责具体的逻辑处 ...
- Mirror--使用证书配置镜像模板
--==================================================================--该文档主要用于内部配置模板--场景:--主服务器:192.1 ...
- sql server中带有output的DML
OUTPUT是SQL SERVER2005的新特性.可以从数据修改语句中返回输出.可以看作是"返回结果的DML".INSERT,DELETE,UPDATE均支持OUTPUT子句.在 ...
- 深入理解Nginx
nginx概述 nginx是一款自由的.开源的.高性能的HTTP服务器和反向代理服务器:同时也是一个IMAP.POP3.SMTP代理服务器:nginx可以作为一个HTTP服务器进行网站的发布处理,另外 ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) Solution
A. Altruistic Amphibians Upsolved. 题意: $有n只青蛙,其属性用三元组表示 <l_i, w_i, h_i> l_i是它能跳的高度,w_i是它的体重,h_ ...
- cocos2dx 3.x 拼图小游戏
.h #define IMAGE_MAX 2 //图片的个数.. //图片结构体 属性 struct IMAGE_DATA { cocos2d::Sprite *m_pImage; bool m_bO ...
- Least slack time scheduling
This algorithm is also known as least laxity first. 词语解释:Laxity 松懈的:马虎的:不严格的,Least-Laxity-First 松弛程度 ...
- Web前端学习笔记之前端跨域知识总结
0x00 前言 相信每一个前端er对于跨域这两个字都不会陌生,在实际项目中应用也是比较多的.但跨域方法的多种多样实在让人目不暇接.老规矩,碰到这种情况,就只能自己总结一篇博客,作为记录. 0x01 什 ...
- linux读书笔记第三章
第3章 进程管理20 3.1 进程20 进程就是处于执行期的程序(目标码存放在某种存储介质上),但进程并不仅仅局限于一段可执行程序代码.通常进程还要包含其他资源,像打开的文件,挂起的信号,内核内部数据 ...