题解:

线段树合并

比较一下哪一种方案的逆序对少

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=;
typedef long long ll;
ll ans,ANS,a[N],cnt,ch[N][],rt[N],cn,CH[N][],sum[N],CNT,n;
void addnew(ll &x,ll l,ll r,ll v)
{
CNT++;x=CNT;
sum[x]++;
if (l==r) return;
ll mid=(l+r)/;
if (v<=mid) addnew(ch[x][],l,mid,v);
else addnew(ch[x][],mid+,r,v);
}
void build(ll &x)
{
cnt++;x=cnt;
scanf("%lld",&a[x]);
if (a[x])
{
addnew(rt[x],,n,a[x]);
return;
}
build(CH[x][]);
build(CH[x][]);
}
ll merge(ll x,ll y)
{
if (!x) return y;
if (!y) return x;
ans+=sum[ch[x][]]*sum[ch[y][]];
ch[x][]=merge(ch[x][],ch[y][]);
ch[x][]=merge(ch[x][],ch[y][]);
sum[x]=sum[ch[x][]]+sum[ch[x][]];
return x;
}
void dfs(ll x)
{
ll lc=CH[x][],rc=CH[x][];
if (a[x]) return;
dfs(lc);dfs(rc);
ll tot=sum[rt[lc]]*sum[rt[rc]];
ans=;
rt[x]=merge(rt[lc],rt[rc]);
ANS+=min(ans,tot-ans);
}
int main()
{
scanf("%lld",&n);
ll root;
build(root);
dfs(root);
printf("%lld",ANS);
}

bzoj2212的更多相关文章

  1. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  2. BZOJ2212 POI2011Tree Rotations(线段树合并)

    显然子树内的操作不会对子树外产生影响.于是贪心,若交换之后子树内逆序对减少就交换. 这个东西可以用权值线段树计算.操作完毕后需要对两棵权值线段树合并,这个的复杂度是两棵线段树的重复节点个数.那么总复杂 ...

  3. BZOJ2212 [Poi2011]Tree Rotations 【线段树合并】

    题目链接 BZOJ2212 题解 一棵子树内的顺序不影响其与其它子树合并时的答案,这一点与归并排序的思想非常相似 所以我们只需单独处理每个节点的两棵子树所产生的最少逆序对即可 只有两种情况,要么正序要 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. BZOJ2212: [Poi2011]Tree Rotations

    2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submi ...

  6. BZOJ2212 [POI2011] Tree Rotations 【treap】

    题目分析: 写的无旋treap应该跑不过,但bzoj判断的总时限.把相关实现改成线段树合并就可以了. 代码: #include<bits/stdc++.h> using namespace ...

  7. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  8. bzoj3702/bzoj2212 二叉树 (线段树合并)

    用线段树记每个子树中包含的数,然后合并的时候算出来逆序对的数量(合并a,b时,就是size[ch[a][1]]*size[ch[b][0]]),来决定这个子树要不要翻转 #include<bit ...

  9. 【BZOJ2212】[POI2011]Tree Rotations (线段树合并)

    题解: 傻逼题 启发式合并线段树里面查$nlog^2$ 线段树合并顺便维护一下$nlogn$ 注意是叶子为n 总结点2n 代码: #include <bits/stdc++.h> usin ...

  10. BZOJ2212或洛谷3521 [POI2011]ROT-Tree Rotations

    BZOJ原题链接 洛谷原题链接 线段树合并裸题. 因为交换子树只会对子树内部的逆序对产生影响,所以我们计算交换前的逆序对个数和交换后的个数,取\(\min\)即可. 对每个叶子节点建一棵动态开点线段树 ...

随机推荐

  1. nginx lua模块安装

    1.安装LuaJIT,LuaJIT为LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language wget http ...

  2. 【Python】通过python代码实现demo_test环境的登录,通过csv/txt/excel文件批量添加课程并开启课程操作--(刚开始 项目 页面 模块 元素这种鸟 被称作pageobject 等这些搞完 然后把你的定位器、数据 和脚本在分离 就是传说中那个叫数据驱动 的鸟)

    一.1.通过csv文件批量导入数据 1 from selenium import webdriver from time import ctime,sleep import csv #循环读取每一行每 ...

  3. Good Bye 2018 Solution

    A. New Year and the Christmas Ornament 签到. #include <bits/stdc++.h> using namespace std; int a ...

  4. uva11090 Bellman-Ford 运用

    给定一一个n个点m条边的加权有向图, 平均值最小的回路. 二分答案,对于每个二分的mid 做一次Bellman-Fprd , 假设有k条边组成的回路. 回路上各条边的权值为  w1 , w2 ..wk ...

  5. RedHot 不能联网 ifconfig命令只显示lo 不显示eth0的解决方法!

    1.修改eth0 具体步骤如下 vi /etc/sysconfig/network-scripts/ifcfg-eth0, i,进入insert编辑模式,具体参数设置如下: DEVICE=eth0 B ...

  6. bzoj1617 / P2904 [USACO08MAR]跨河River Crossing

    P2904 [USACO08MAR]跨河River Crossing 显然的dp 设$f[i]$表示运走$i$头奶牛,木筏停在未过河奶牛一侧所用的最小代价 $s[i]$表示一次运$i$头奶牛到对面的代 ...

  7. 20145311 《Java程序设计》第2周学习总结

    20145311 <Java程序设计>第2周学习总结 教材学习内容总结 3.1Java的类型分为基本类型(Primitive type)和类类型(Class type)基本类型: *整数: ...

  8. 如何运行.ipynb文件

    首先cmd下面输入: pip install jupyter notebook ,安装慢的改下pip的源为国内的源 然后cmd中输入: jupyter notebook就会弹出一个页面 先upload ...

  9. uboot 版本号生成过程

    uboot 版本号生成过程 uboot版本号貌似与实际开发不相关,但是我现在遇到一个bug与版本号关联密切. 这个bug与<uboot dm9000驱动故障>基本上是一样的,但是在上一篇博 ...

  10. ESP8266调试笔记

    ESP8266 新款版本使用用简要: 此版本若想从FLASH启动进入AT系统,只需中间四个脚接VCC高电平即可,其中GPIO0为高电平代表从FLASH启动,GPIO0为低电平代表进入系统升级状态,此时 ...