Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 9060   Accepted: 2698

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source

旋转卡壳算法可以参见我的上一篇博客以及里面的链接:http://www.cnblogs.com/liyinggang/p/5431908.html

题意:求解平面中的点中任意取三个能够形成最大的三角形面积。

题解:先用凸包把所有可能的点选出来,最大三角形必定是由凸包上的三点形成。

我们枚举底边,于是我们可以的到以下两种情况:

1.此三角形的底边在凸包上,求得次边对应的最远的点(不是对踵点),由于凸包是个单峰函数,所以只要找到第一个这个点比上一个点

大就找到了。记录下此时的面积(对应黄色线条).

2.如果三角形底边不再凸包上,我们利用同样的方法找到离此底边最远的点(对应红色线条)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAATMAAAFbCAIAAAA2nf4+AAAKHElEQVR4nO3bS3bkxhFAUS7EQ+9/Z554A/AA7lI3u6oIoBBAfO49WgAyIh9TIo++FiCfr7s/AHhCmZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyuzj65e7P4QT2GITX3+5+4v4iP2V93eT4mzA8gp706Q+q7O2qjZmKc6i7KyeXU3qsyjbKmZLeOJswKrK2PUeejyrs6QajmUmzrpsKLsP6/J4FmU3qZ0VlTjLsZikTm/J41mLlWQUl5A4q7CPXC4ox+NZgk0kcmUw4kzOGlK4pROPZ2YWcL978xBnTqZ/pyRVeDwTMvfbZIsh2/cMZ+g3SNuAxzMP475a/quf/wsnMOvrFLrxHs/bmfJFKl70it/chhGHK32/PZ53MdxYPa51j1PUYrJRmt1mj+fFzDRE10vc9VwJGejJ2t9dj+c1jPJMc67snJPexRzPMfCmejxDmeAJJl/QyWcPZXwfcS8Xj2cMgzvOdfydaZzL1I5wC5/yeJ7IvPZx+X5kPqcwrB3cuY38/PqcMW3iqh1gYp8wo5+5YYf5iXaY6bzjYp3CDA8wmpfcpxP5GbeXoTzhGgUx1e1M5Du3J5SfehuZxT/cmMsY9Y8M4v/clYt5PN8zAk3eyfBfGX9+N+NuHs+nBp/cbcjEOr6Zemz3IB+P5+/mHdjuc7Og1bDT2noFHs9lTpk2Xc7wlc045Owd1zX58ex+vKl77WTmElufbeRGWxr4eDY91bAtDjFqrR2PNGl/08x5PHsdZsbOmLDoRicZsC0e2j+eLc7QekO80Xj19Q/Qdzds0fXxrPzpHffBMf0uQ9nvbrcJPtTs8Sz4xY2mz+naXI9qn9tl7sTp8XjW+dD6s+ZK1S9Mka8sPmVuUfraFPjE5cWI7/4oaih6eQp84vJsuHd/EZVUvD8FPnFZluW/X+s///nXv9d/7v4gilFmgF9ZfotTn2ynzAB/lunx5ABlBnhWpseTXZQZYEOZ4uQ9ZQbYVqY+eUOZAfaUKU6eUmaAF2Uuy/IqTn3yjTIDvC5zESfbKDPA2zJX+uQ9ZQbYUObyNk59oswA28pciZOnlBlgT5krffKNMgPsL3MRJ39SZoBDZa70yUqZAT4ocxEny7IoM8RnZa70OZwyA5xR5uLPKrMpM8BJZa7EOZMyA5xa5uLxHEmZAc4ucyXOUZQZIKbMlT6HUGaAyDIXcc6gzADBZa702ZsyA1xS5uI3Q60pM8BVZa7E2ZIyA1xb5uLx7EiZAS4vcyXOTpQZ4KYyV/rsQZkBbi1zEWcLygxwd5krfZamzAA5ylz8ZqgyZQZIU+ZKnBUpM0CyMhePZ0HKDJCvzJU4C1FmgKxlrvRZgjID5C5zEWcFygyQvsyVPjNTZoAiZS7iTEyZAeqUudJnQsoMUK3MxZ9V8lFmgIJlrsSZhzIDlC1z8XimocwAlctcifN2ygxQv8yVPm+kzABdylzEeR9lBmhU5kqf11NmgHZlLn4zdDllBuhY5kqcl1FmgL5lLh7PqygzQOsyV+KMpswAA8pc6TOOMgOMKXMRZxhlBphU5kqfp1NmgHllLn4zdDZlBhhZ5kqcZ1FmgMFlLh7PkygzwOwyV+L8kDIDKPMXfR6mzADK/I04j1FmAGX+RZ97KTOAMp8R5y7KDKDM1/S5kTJjKPM1f1bZQpkxlPkTcb6nzBj+hXYDj+cbyoyhzM3E+ZQyYyhzJ31+o8wYytxPnL9TZgxlHqXPlTJjKPMDfjO0KDOKMj82PE5lxlDmGSY/nsqMoczzzIxTmTGUebZpfSozhjIDjIpTmTGUGWZIn8qMocxIE34zpMwYyozXO05lxlDmJRo/nsqMocwLtYxTmTGUeblmfSozhjLv0ClOZcZQ5n169KnMGMq8VYM4lRlDmQmU7lOZMZSZQ90/qygzhjIzqRinMmMoM5lyj6cyYygzpUJxKjOGMhMr0acyYygzt/xxKjOGMivI3KcyYyiziLS/GVJmDGWWkjBOZcZQZjXZHk9lxlBmTXniVGYMZVaWoU9lxlBmcbfHqcwYymzhxj6VGUOZXdz1myFlxlBmL9fHqcwYymzn4sdTmTGU2dRlcSozhjJbu6BPZcZQZnfRcSozhjJniOtTmTGUOUZQnMqMocxhTu9TmTGUOc+5f1ZRZgxlTnVWnMqMoczZPu9TmTGUOd6HcSozhjJZluWDPpUZQ5n8cixOZcZQJn/a26cyYyiTv+z6s4oyYyiTFzbGqcwYyuS1LY+nMmMok5+8j1OZMZTJNm/6VGYAZbLZljjv/safFfjEZVEmu73v8+6v+1mBT1wWZXLEif+ryvWKXG5lcpQyA319KZPjlBnlj9+qyZL9vr6+/Hfm+b6eufujqKHo5SnwicuL4VYZMTeqe20KfOJKnOxS/cLU+MrVm1lXGTfXaHBPynzoQ4OhE6fN9Sj2uSuPJ091uhX1vvih0xr4UL/LUPW7H/qthL1a3oHCn/7QcjFs0Xj15Q/w0HhJPNV74x3O8NB7VTxMWHSfkzxMWNtkQ/bb6jAPQ5Y3zai1NjzSw6hFtjdtmz1P9TBtnS3NXGLnsz3MXG0PY3fX/HgPYxdc1/CVjTjkw/BlF2JTU875YOXJWdBq1mkfrD8ne3kYd+AHlyAV6/hm6LEfXIgMbOFvc0/+4FrcyPBfmX7+B1fkemb+hhH8w0W5jFH/yCC+c2mimfAWZvGEqxPEYLczkZdco3OZ5y6G8o7LdApjPMBofuZifcL0jjGdTVyvAwztE2a0g6u2nVl9yJj2eXPh3LmV+ZzCsI5w+V4xmbOY10Eez29M41ym9hHXcWUOpzO4Tw1/PCefPZTxnWPmBZ156muY4GlGPZ5zTnoXczzZhCs74Yy3M8oQXe9u13MlZKBR+l3ififKzExj9bjNPU5Ri8mGq36tq39/UYZ7kYr3u+I3t2HE16l10Wt9bT+mfLX8Nz7/F05g1jfIfPUzf9soxn2bbA1k+57hDP1OeWLI8yWszP1+91ahyZxMP4W78pBlWhaQyJWdaDI5a8jlmmBkmZ9NZBRXjiarsI+kIhKSZSFWktpZLWmyHIvJ7vOoZFmR3dRwrC5N1mVDZezNTJalWVIxW3rTZANWVc/78GTZg21V9aZATTZgZ4XJsjFrK0+TLVleB7Lsx/760GQntggZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjP4HpC/b5jY7ZMAAAAAASUVORK5CYII=" alt="" width="183" height="207" />1,2相比,取大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = ;
struct Point{
int x,y;
}p[N],Stack[N];
int n; int mult(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
int dis(Point a,Point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cmp(Point a,Point b){
if(mult(a,b,p[])>) return ;
if(mult(a,b,p[])==&&dis(b,p[])>dis(a,p[])) return ;
return ;
}
int Graham(){
sort(p+,p+n,cmp);
int top = ;
Stack[]=p[];
Stack[]=p[];
Stack[]=p[];
for(int i=;i<n;i++){
while(top>=&&mult(p[i],Stack[top],Stack[top-])>=){
top--;
}
Stack[++top]=p[i];
}
return top;
}
double rotating_calipers(int top){
int p=,q=; ///初始化
double ans = ;
Stack[++top]=Stack[];
for(int i = ;i<top;i++){
while(mult(Stack[i],Stack[p],Stack[q+])>mult(Stack[i],Stack[p],Stack[q])){
q= (q+)%top; ///定点i,p,q,先I,p固定,让q旋转找到最大的面积三角形,还是利用了凸包的单峰函数
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
while(mult(Stack[i],Stack[p+],Stack[q])>mult(Stack[i],Stack[p],Stack[q])){
p=(p+)%top; ///i,q固定,p旋转,找到最大的三角形面积,比较记录.
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
}
return ans;
}
int main()
{
while(scanf("%d",&n)!=EOF,n!=-){
for(int i=;i<n;i++){
scanf("%d%d",&p[i].x,&p[i].y);
}
int k = ;
for(int i=;i<n;i++){
if(p[k].y>p[i].y||(p[k].y==p[i].y)&&(p[k].x>p[i].x)){
k=i;
}
}
swap(p[],p[k]);
int top = Graham();
double ans =rotating_calipers(top);
printf("%.2lf\n",ans);
}
return ;
}

poj 2079(旋转卡壳求解凸包内最大三角形面积)的更多相关文章

  1. poj 3608(旋转卡壳求解两凸包之间的最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9768   Accepted: ...

  2. Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离

    \(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...

  3. Poj 2187 旋转卡壳

    Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...

  4. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  7. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  8. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  9. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

随机推荐

  1. BZOJ 1491 社交网络 Floyd 最短路的数目

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1491 题目大意: 见链接 思路: 直接用floyd算法求最短路,同时更新最短路的数目即 ...

  2. storm-kafka

    包依赖

  3. 20145324 Java实验三

    一.git 上传代码步骤 上传结果 原代码 下载同学代码 更改 二.重构 原代码 rename 原代码 实验总结 这次实验比较简单,而且终于解决了git的问题,很开心 步骤 耗时 百分比 需求分析 1 ...

  4. 401. Binary Watch 回溯

    A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bottom ...

  5. spring boot容器加载完后执行特定操作

    有时候我们需要在spring boot容器启动并加载完后,开一些线程或者一些程序来干某些事情.这时候我们需要配置ContextRefreshedEvent事件来实现我们要做的事情 1.Applicat ...

  6. C#流概述

    C#流概述 .NET Framework使用“流”来支持读取或写入文件.可以将流视为一组连续的一维数据,包含开头和结尾,并且其中的游标指示了流的当前位置. 1.流操作 流中包含的数据可能来自内存.文件 ...

  7. ThinkPHP5入门(三)----模型篇

    一.操作数据库 1.数据库连接配置 数据库默认的相关配置在项目的application\database.php中已经定义好. 只需要在模块的数据库配置文件中配置好当前模块需要连接的数据库的配置参数即 ...

  8. iOS 关闭图片渲染

    在为Button 设置背景图片的时候, 会发现显示的效果和UI给的图片不一样, 往往是把图片显示成为蓝色, 这是因为在新版的iOS中, 会自动对图片渲染. 我们只要把图片渲染关掉就OK了 - (UII ...

  9. HDU 1224 Free DIY Tour(spfa求最长路+路径输出)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1224 Free DIY Tour Time Limit: 2000/1000 MS (Java/Oth ...

  10. Java中的集合和常用类

    Java中的常用类: ▪ Object类 ▪ Math类 ▪ String类和StringBuffer类(字符串) ▪ 8种基本类型所对应的包装类 ▪ java.util包中的类——Date类 Obj ...