Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 9060   Accepted: 2698

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source

旋转卡壳算法可以参见我的上一篇博客以及里面的链接:http://www.cnblogs.com/liyinggang/p/5431908.html

题意:求解平面中的点中任意取三个能够形成最大的三角形面积。

题解:先用凸包把所有可能的点选出来,最大三角形必定是由凸包上的三点形成。

我们枚举底边,于是我们可以的到以下两种情况:

1.此三角形的底边在凸包上,求得次边对应的最远的点(不是对踵点),由于凸包是个单峰函数,所以只要找到第一个这个点比上一个点

大就找到了。记录下此时的面积(对应黄色线条).

2.如果三角形底边不再凸包上,我们利用同样的方法找到离此底边最远的点(对应红色线条)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAATMAAAFbCAIAAAA2nf4+AAAKHElEQVR4nO3bS3bkxhFAUS7EQ+9/Z554A/AA7lI3u6oIoBBAfO49WgAyIh9TIo++FiCfr7s/AHhCmZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyuzj65e7P4QT2GITX3+5+4v4iP2V93eT4mzA8gp706Q+q7O2qjZmKc6i7KyeXU3qsyjbKmZLeOJswKrK2PUeejyrs6QajmUmzrpsKLsP6/J4FmU3qZ0VlTjLsZikTm/J41mLlWQUl5A4q7CPXC4ox+NZgk0kcmUw4kzOGlK4pROPZ2YWcL978xBnTqZ/pyRVeDwTMvfbZIsh2/cMZ+g3SNuAxzMP475a/quf/wsnMOvrFLrxHs/bmfJFKl70it/chhGHK32/PZ53MdxYPa51j1PUYrJRmt1mj+fFzDRE10vc9VwJGejJ2t9dj+c1jPJMc67snJPexRzPMfCmejxDmeAJJl/QyWcPZXwfcS8Xj2cMgzvOdfydaZzL1I5wC5/yeJ7IvPZx+X5kPqcwrB3cuY38/PqcMW3iqh1gYp8wo5+5YYf5iXaY6bzjYp3CDA8wmpfcpxP5GbeXoTzhGgUx1e1M5Du3J5SfehuZxT/cmMsY9Y8M4v/clYt5PN8zAk3eyfBfGX9+N+NuHs+nBp/cbcjEOr6Zemz3IB+P5+/mHdjuc7Og1bDT2noFHs9lTpk2Xc7wlc045Owd1zX58ex+vKl77WTmElufbeRGWxr4eDY91bAtDjFqrR2PNGl/08x5PHsdZsbOmLDoRicZsC0e2j+eLc7QekO80Xj19Q/Qdzds0fXxrPzpHffBMf0uQ9nvbrcJPtTs8Sz4xY2mz+naXI9qn9tl7sTp8XjW+dD6s+ZK1S9Mka8sPmVuUfraFPjE5cWI7/4oaih6eQp84vJsuHd/EZVUvD8FPnFZluW/X+s///nXv9d/7v4gilFmgF9ZfotTn2ynzAB/lunx5ABlBnhWpseTXZQZYEOZ4uQ9ZQbYVqY+eUOZAfaUKU6eUmaAF2Uuy/IqTn3yjTIDvC5zESfbKDPA2zJX+uQ9ZQbYUObyNk59oswA28pciZOnlBlgT5krffKNMgPsL3MRJ39SZoBDZa70yUqZAT4ocxEny7IoM8RnZa70OZwyA5xR5uLPKrMpM8BJZa7EOZMyA5xa5uLxHEmZAc4ucyXOUZQZIKbMlT6HUGaAyDIXcc6gzADBZa702ZsyA1xS5uI3Q60pM8BVZa7E2ZIyA1xb5uLx7EiZAS4vcyXOTpQZ4KYyV/rsQZkBbi1zEWcLygxwd5krfZamzAA5ylz8ZqgyZQZIU+ZKnBUpM0CyMhePZ0HKDJCvzJU4C1FmgKxlrvRZgjID5C5zEWcFygyQvsyVPjNTZoAiZS7iTEyZAeqUudJnQsoMUK3MxZ9V8lFmgIJlrsSZhzIDlC1z8XimocwAlctcifN2ygxQv8yVPm+kzABdylzEeR9lBmhU5kqf11NmgHZlLn4zdDllBuhY5kqcl1FmgL5lLh7PqygzQOsyV+KMpswAA8pc6TOOMgOMKXMRZxhlBphU5kqfp1NmgHllLn4zdDZlBhhZ5kqcZ1FmgMFlLh7PkygzwOwyV+L8kDIDKPMXfR6mzADK/I04j1FmAGX+RZ97KTOAMp8R5y7KDKDM1/S5kTJjKPM1f1bZQpkxlPkTcb6nzBj+hXYDj+cbyoyhzM3E+ZQyYyhzJ31+o8wYytxPnL9TZgxlHqXPlTJjKPMDfjO0KDOKMj82PE5lxlDmGSY/nsqMoczzzIxTmTGUebZpfSozhjIDjIpTmTGUGWZIn8qMocxIE34zpMwYyozXO05lxlDmJRo/nsqMocwLtYxTmTGUeblmfSozhjLv0ClOZcZQ5n169KnMGMq8VYM4lRlDmQmU7lOZMZSZQ90/qygzhjIzqRinMmMoM5lyj6cyYygzpUJxKjOGMhMr0acyYygzt/xxKjOGMivI3KcyYyiziLS/GVJmDGWWkjBOZcZQZjXZHk9lxlBmTXniVGYMZVaWoU9lxlBmcbfHqcwYymzhxj6VGUOZXdz1myFlxlBmL9fHqcwYymzn4sdTmTGU2dRlcSozhjJbu6BPZcZQZnfRcSozhjJniOtTmTGUOUZQnMqMocxhTu9TmTGUOc+5f1ZRZgxlTnVWnMqMoczZPu9TmTGUOd6HcSozhjJZluWDPpUZQ5n8cixOZcZQJn/a26cyYyiTv+z6s4oyYyiTFzbGqcwYyuS1LY+nMmMok5+8j1OZMZTJNm/6VGYAZbLZljjv/safFfjEZVEmu73v8+6v+1mBT1wWZXLEif+ryvWKXG5lcpQyA319KZPjlBnlj9+qyZL9vr6+/Hfm+b6eufujqKHo5SnwicuL4VYZMTeqe20KfOJKnOxS/cLU+MrVm1lXGTfXaHBPynzoQ4OhE6fN9Sj2uSuPJ091uhX1vvih0xr4UL/LUPW7H/qthL1a3oHCn/7QcjFs0Xj15Q/w0HhJPNV74x3O8NB7VTxMWHSfkzxMWNtkQ/bb6jAPQ5Y3zai1NjzSw6hFtjdtmz1P9TBtnS3NXGLnsz3MXG0PY3fX/HgPYxdc1/CVjTjkw/BlF2JTU875YOXJWdBq1mkfrD8ne3kYd+AHlyAV6/hm6LEfXIgMbOFvc0/+4FrcyPBfmX7+B1fkemb+hhH8w0W5jFH/yCC+c2mimfAWZvGEqxPEYLczkZdco3OZ5y6G8o7LdApjPMBofuZifcL0jjGdTVyvAwztE2a0g6u2nVl9yJj2eXPh3LmV+ZzCsI5w+V4xmbOY10Eez29M41ym9hHXcWUOpzO4Tw1/PCefPZTxnWPmBZ156muY4GlGPZ5zTnoXczzZhCs74Yy3M8oQXe9u13MlZKBR+l3ififKzExj9bjNPU5Ri8mGq36tq39/UYZ7kYr3u+I3t2HE16l10Wt9bT+mfLX8Nz7/F05g1jfIfPUzf9soxn2bbA1k+57hDP1OeWLI8yWszP1+91ahyZxMP4W78pBlWhaQyJWdaDI5a8jlmmBkmZ9NZBRXjiarsI+kIhKSZSFWktpZLWmyHIvJ7vOoZFmR3dRwrC5N1mVDZezNTJalWVIxW3rTZANWVc/78GTZg21V9aZATTZgZ4XJsjFrK0+TLVleB7Lsx/760GQntggZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjJQJGSkTMlImZKRMyEiZkJEyISNlQkbKhIyUCRkpEzJSJmSkTMhImZCRMiEjZUJGyoSMlAkZKRMyUiZkpEzISJmQkTIhI2VCRsqEjP4HpC/b5jY7ZMAAAAAASUVORK5CYII=" alt="" width="183" height="207" />1,2相比,取大值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int N = ;
struct Point{
int x,y;
}p[N],Stack[N];
int n; int mult(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
int dis(Point a,Point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cmp(Point a,Point b){
if(mult(a,b,p[])>) return ;
if(mult(a,b,p[])==&&dis(b,p[])>dis(a,p[])) return ;
return ;
}
int Graham(){
sort(p+,p+n,cmp);
int top = ;
Stack[]=p[];
Stack[]=p[];
Stack[]=p[];
for(int i=;i<n;i++){
while(top>=&&mult(p[i],Stack[top],Stack[top-])>=){
top--;
}
Stack[++top]=p[i];
}
return top;
}
double rotating_calipers(int top){
int p=,q=; ///初始化
double ans = ;
Stack[++top]=Stack[];
for(int i = ;i<top;i++){
while(mult(Stack[i],Stack[p],Stack[q+])>mult(Stack[i],Stack[p],Stack[q])){
q= (q+)%top; ///定点i,p,q,先I,p固定,让q旋转找到最大的面积三角形,还是利用了凸包的单峰函数
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
while(mult(Stack[i],Stack[p+],Stack[q])>mult(Stack[i],Stack[p],Stack[q])){
p=(p+)%top; ///i,q固定,p旋转,找到最大的三角形面积,比较记录.
}
ans = max(ans,mult(Stack[i],Stack[p],Stack[q])/2.0);
}
return ans;
}
int main()
{
while(scanf("%d",&n)!=EOF,n!=-){
for(int i=;i<n;i++){
scanf("%d%d",&p[i].x,&p[i].y);
}
int k = ;
for(int i=;i<n;i++){
if(p[k].y>p[i].y||(p[k].y==p[i].y)&&(p[k].x>p[i].x)){
k=i;
}
}
swap(p[],p[k]);
int top = Graham();
double ans =rotating_calipers(top);
printf("%.2lf\n",ans);
}
return ;
}

poj 2079(旋转卡壳求解凸包内最大三角形面积)的更多相关文章

  1. poj 3608(旋转卡壳求解两凸包之间的最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9768   Accepted: ...

  2. Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离

    \(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接 ...

  3. Poj 2187 旋转卡壳

    Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...

  4. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  6. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  7. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  8. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  9. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

随机推荐

  1. js实现点击按钮显示某个区域 然后点击页面中任意其他位置,隐藏该区域

    $(".licat-header-list").on("click",function(e){ $(this).addClass("active&qu ...

  2. JavaScript浏览器检测之客户端检测

    客户端检测一共分为三种,分别为:能力检测.怪癖检测和用户代理检测,通过这三种检测方案,我们可以充分的了解当前浏览器所处系统.所支持的语法.所具有的特殊性能. 一.能力检测: 能力检测又称作为特性检测, ...

  3. python open 追加

    今天操作失误,导致home目录没空间了,结果跑了3天的程序断了,还好代码可以重新运行. 读写的文件使用追加方式: # a # 打开一个文件用于追加(只写),写入内容为str # 如果该文件已存在,文件 ...

  4. 【[CQOI2018]交错序列】

    这个题简直有毒,\(O((a+b)^3logn)\)的做法不卡常只比\(O(2^n*n)\)多\(10\)分 看到\(a\)和\(b\)简直小的可怜,于是可以往矩阵上联想 发现这个柿子有些特殊,好像可 ...

  5. 线性回归 Python实现

    import numpy as np import pylab def plot_data(data, b, m): x = data[:, 0] y = data[:, 1] y_predict = ...

  6. 3、Spring Cloud - Eureka(高可用Eureka Server集群)

    在实际的项目中,可能有几十个或者几百个的微服务实例,这时 Eureka Server 承担了非 常高的负载.由于 Eureka Server 在微服务架构中有着举足重轻的作用,所以需要对 Eureka ...

  7. 5.3.1 RPC端点RpcEndpoint

    ThreadSafeRpcEndpoint对消息的处理都是串行的,即前一条消息处理完才能接着处理下一条消息.ThreadSafeRpcEndpoint的继承体系如图5-3所示. 5.3.2 RPC端点 ...

  8. Python--BeautifulSoup库安装

    1.BeautifulSoup简介 BeautifulSoup库通过解析文档可以获取网页文档中所需的数据,方便用户从HTML或XHTML文档中提取数据,作为python的一个辅助工作,也是爬虫实践中的 ...

  9. 全球参考系统(WRS)概述及常用工具汇总

    1.全球参考系统(WRS)简介 WRS(Worldwide Reference System)是Landsat卫星采用的全球参考系统,也是国际上非常具有代表意义的全球参考系统之一.WRS是依据卫星地面 ...

  10. DPDK运行出现error while loading shared libraries的解決方法

    问题 error: while loading shared libraries: xxx.so.0:cannot open shared object file: No such file or d ...