[SCOI2009]windy数 BZOJ1026 数位dp
题目描述
windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?
输入输出格式
输入格式:
包含两个整数,A B。
输出格式:
一个整数
输入输出样例
说明
100%的数据,满足 1 <= A <= B <= 2000000000 。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 100000007;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll dp[20][20], ans;
int a[maxn];
int len;
ll l, r; ll dfs(int pos, int pre, int lead, int limit) {
if (pos > len)return 1;
if (!limit&&dp[pos][pre] != -1)return dp[pos][pre];
ll res = 0;
int up = limit ? a[len - pos + 1] : 9;
for (int i = 0; i <= up; i++) {
if (abs(i - pre) < 2)continue;
if (lead&&i == 0)res += dfs(pos + 1, -2, 1, limit&&i == up);
else res += dfs(pos + 1, i, 0, limit&i == up);
}
if (!limit && !lead)dp[pos][pre] = res;
return res;
} ll sol(ll x) {
len = 0;
while (x)a[++len] = x % 10, x /= 10;
mclr(dp, -1);
return dfs(1, -2, 1, 1);
} int main()
{
// ios::sync_with_stdio(0);
rdllt(l); rdllt(r);
cout << (ll)sol(r) - (ll)sol(l - 1) << endl;
return 0;
}
[SCOI2009]windy数 BZOJ1026 数位dp的更多相关文章
- BZOJ_1026_[SCOI2009]windy数_数位DP
BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...
- [bzoj1026][SCOI2009]windy数_数位dp
windy数 bzoj-1026 题目大意:求一段区间中的windy数个数. 注释:如果一个数任意相邻两位的差的绝对值都不小于2,这个数就是windy数,没有前导0.$区间边界<=2\cdot ...
- bzoj1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8203 Solved: 3687[Submit][Sta ...
- 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...
- BZOJ1026 SCOI2009 windy数 【数位DP】
BZOJ1026 SCOI2009 windy数 Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B ...
- bzoj 1026 [SCOI2009]windy数(数位DP)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4550 Solved: 2039[Submit][Sta ...
- 1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9016 Solved: 4085[Submit][Sta ...
- 1026. [SCOI2009]windy数【数位DP】
Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...
- 【BZOJ】1026: [SCOI2009]windy数(数位dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1026 我果然很弱啊... 考虑数位dp.枚举每一位,然后限制下一位即可. 一定要注意啊!在dfs的时 ...
随机推荐
- Spring Cloud Eureka 2 (Eureka Server搭建服务注册中心)
工具:IntelliJ IDEA 2017.1.2 x64.maven3.3.9 打开IDE file===>new===>project next next 选择相应的依赖 next ...
- cuteFTP软件往linux中上传文件时报…
我是在win7和VM中的ubuntu传输文件: 使用一个客户端,可以正常的连接,但是当上传文件时,总是报553 Could not create file错误信息. 主要原因是新建的文件夹没有更改权限 ...
- bootstrap中的data-dismiss属性
<button type="button" class="btn default" data-dismiss="modal">关 ...
- lucene和solr
我们为什么要用solr呢? 1.solr已经将整个索引操作功能封装好了的搜索引擎系统(企业级搜索引擎产品) 2.solr可以部署到单独的服务器上(WEB服务),它可以提供服务,我们的业务系统就只要发送 ...
- 面试题:四种Java线程池用法解析 !=!=未看
1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? 1 2 3 4 5 6 7 8 new Thread(new Runnable() { @Override ...
- MAC通过SSH使用PEM文件登录
1.命令如下 ssh -i key.pem ssh -i key.pem root@IP 如果出现报错说明这个问题是文件的权限太大了,需要给小点 sudo chmod 600 key.pem 然后再执 ...
- linux下的同步与互斥
linux下的同步与互斥 谈到linux的并发,必然涉及到线程之间的同步和互斥,linux主要为我们提供了几种实现线程间同步互斥的 机制,本文主要介绍互斥锁,条件变量和信号量.互斥锁和条件变量包含在p ...
- C++ 输出精度和输出小数点位数
有时候需要调节小数点的精度或者位数 #include<iostream> #include<iomanip> using namespace std; //设置数据精度 set ...
- 为什么rand和srand总是同时出现?
如果没有srand,那么rand在我电脑上运行每次返回的随机数是一样的.如果如果先调用srand,而且srand的参数不一样,那么最后产生的随机数就会不一样?那怎么然srand的参数是不一样的呢? 是 ...
- 4.SELECT DISTINCT 语句
在表中,可能会包含重复值.这并不成问题,不过,有时您也许希望仅仅列出不同(distinct)的值. 关键词 DISTINCT 用于返回唯一不同的值. 语法: SELECT DISTINCT 列名称 F ...