L2范数惩罚项,高维线性回归
%matplotlib inline
import mxnet
from mxnet import nd,autograd
from mxnet import gluon,init
from mxnet.gluon import data as gdata,loss as gloss,nn
import gluonbook as gb n_train, n_test, num_inputs = 20,100,200 true_w = nd.ones((num_inputs, 1)) * 0.01
true_b = 0.05 features = nd.random.normal(shape=(n_train+n_test, num_inputs))
labels = nd.dot(features,true_w) + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape) train_feature = features[:n_train,:]
test_feature = features[n_train:,:]
train_labels = labels[:n_train]
test_labels = labels[n_train:] #print(features,train_feature,test_feature) # 初始化模型参数
def init_params():
w = nd.random.normal(scale=1, shape=(num_inputs, 1))
b = nd.zeros(shape=(1,))
w.attach_grad()
b.attach_grad()
return [w,b] # 定义,训练,测试 batch_size = 1
num_epochs = 100
lr = 0.03 train_iter = gdata.DataLoader(gdata.ArrayDataset(train_feature,train_labels),batch_size=batch_size,shuffle=True) # 定义网络
def linreg(X, w, b):
return nd.dot(X,w) + b # 损失函数
def squared_loss(y_hat, y):
"""Squared loss."""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2 # L2 范数惩罚
def l2_penalty(w):
return (w**2).sum() / 2 def sgd(params, lr, batch_size):
for param in params:
param[:] = param - lr * param.grad / batch_size def fit_and_plot(lambd):
w, b = init_params()
train_ls, test_ls = [], []
for _ in range(num_epochs):
for X, y in train_iter:
with autograd.record():
# 添加了 L2 范数惩罚项。
l = squared_loss(linreg(X, w, b), y) + lambd * l2_penalty(w)
l.backward()
sgd([w, b], lr, batch_size)
train_ls.append(squared_loss(linreg(train_feature, w, b),
train_labels).mean().asscalar())
test_ls.append(squared_loss(linreg(test_feature, w, b),
test_labels).mean().asscalar())
gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
range(1, num_epochs + 1), test_ls, ['train', 'test'])
print('L2 norm of w:', w.norm().asscalar())
fit_and_plot(0)
fit_and_plot(3)
训练集太少,容易出现过拟合,即训练集loss远小于测试集loss,解决方案,权重衰减——(L2范数正则化)
例如线性回归:
loss(w1,w2,b) = 1/n * sum(x1w1 + x2w2 + b - y)^2 /2 ,平方损失函数。
权重参数 w = [w1,w2],
新损失函数 loss(w1,w2,b) += lambd / 2n *||w||^2
迭代方程:

L2范数惩罚项,高维线性回归的更多相关文章
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- 机器学习中的范数规则化 L0、L1与L2范数 核范数与规则项参数选择
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- 机器学习中的范数规则化之 L0、L1与L2范数、核范数与规则项参数选择
装载自:https://blog.csdn.net/u012467880/article/details/52852242 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理 ...
- 《机器学习实战》学习笔记第八章 —— 线性回归、L1、L2范数正则项
相关笔记: 吴恩达机器学习笔记(一) —— 线性回归 吴恩达机器学习笔记(三) —— Regularization正则化 ( 问题遗留: 小可只知道引入正则项能降低参数的取值,但为什么能保证 Σθ2 ...
- deep learning (五)线性回归中L2范数的应用
cost function 加一个正则项的原因是防止产生过拟合现象.正则项有L1,L2 等范数,我看过讲的最好的是这个博客上的:机器学习中的范数规则化之(一)L0.L1与L2范数.看完应该就答题明白了 ...
- paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数(转)
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
随机推荐
- python 爬虫系列09-selenium+拉钩
使用selenium爬取拉勾网职位 from selenium import webdriver from lxml import etree import re import time from s ...
- JS识别不同浏览器信息
总所周知,不同浏览器兼容是不一致的,然而今天我在Coding的时候深深体会到那个痛苦,一样的代码在Firefox里面是没问题的,可以根据索引找到 对应的对象元素然后进行操作,但是同样的却获取不到对象元 ...
- 将 flask 中的 session 存储到 SQLite 数据库中
将 flask 中的 session 存储到 SQLite 数据库中 使用 flask 构建服务器后端时,常需要在浏览器端存储 cookie 用于识别不同用户,根据不同的 cookie 判断出当前请求 ...
- 数据从mysql迁移到hbase的一些思考及设计
一.进行迁移的原因 由于业务的发展,使用mysql进行建立索引进行搜索已经造成数据流的瓶颈卡在了数据库io,例如每次dump全表的时候,会造成压力过大,造成耗时很长,并且当前的数据量基本上已经达到了亿 ...
- Jquery-ajax()方法提交json数据
1.ajax()提交json数据代码 var strJson = getStrPayJson(); $.ajax({ type: "POST", url: "/userc ...
- 【转载】BootStrap表格组件bootstrap table详解
(转载,来源“脚本之家”,作者不详) 一.Bootstrap Table的引入 关于Bootstrap Table的引入,一般来说还是两种方法: 1.直接下载源码,添加到项目里面来.由于Bootstr ...
- Nginx管理(一)
一.Nginx介绍 Nginx (engine x) 是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务. 1.Nginx历史和特性 Nginx是由伊戈尔·赛索耶夫为俄罗斯 ...
- HTML标签 随笔2
3-1 使用ul 添加新闻信息列表 ul-li是没有前后顺序的信息列表. 语法: <ul> <li>信息</li> <li>信息</li&g ...
- 软件项目技术点(2)——Canvas之平移translate、旋转rotate、缩放scale
AxeSlide软件项目梳理 canvas绘图系列知识点整理 画布操作介绍 画布绘图的环境通过translate(),scale(),rotate(), setTransform()和transf ...
- canvas-菜鸟版画布时钟
这是以前自己练习写的一个画布时钟 <!DOCTYPE html><html lang="en"> <head> <meta charset ...