libevent2源码分析之四:libevent2的消息泵
Dispatch类似于一个消息泵,在一个死循环中,不停地检查IO的状态(可以想像成不断从消息队列中读取消息),将状态的改变变成事件,再进行事件的响应。
主要代码如下:
[event.c]
int
event_base_loop(struct event_base *base, int flags)
{
const struct eventop *evsel = base->evsel;
...
done = 0;
base->event_gotterm = base->event_break = 0;
while (!done) {
base->event_continue = 0;
/* Terminate the loop if we have been asked to */
if (base->event_gotterm) {
break;
}
if (base->event_break) {
break;
}
...
/// 在这里调用底层的 dispatch
res = evsel->dispatch(base, tv_p);
...
if (N_ACTIVE_CALLBACKS(base)) {
/// 处理和响应事件
int n = event_process_active(base);
if ((flags & EVLOOP_ONCE)
&& N_ACTIVE_CALLBACKS(base) == 0
&& n != 0)
done = 1;
} else if (flags & EVLOOP_NONBLOCK)
done = 1;
}
done:
...
return (retval);
}
如果不是一次性事件,由while (!done)是一个死循环。这样可以反复地调用底层的dispatch去获取fd的状态. 在dispatch之后,又调用了event_process_active这个重要的函数。后面会讲到,它的作用是调用event绑定的回调函数。
select_dispatch
其主工作是调用了select函数,然后调用 evmap_io_active 触发事件。这个函数的实现有一个小技巧值得学习就是如何对随时变化的集合进行操作。
static int select_dispatch(struct event_base *base, struct timeval *tv)
{
int res=0, i, j, nfds;
struct selectop *sop = base->evbase;
///...
/// 主要工作是调整 event_XXXset_out 与 event_XXXset_in, select()基于前者,而对set的修改基于后者,在select之前有必要做一次同步
memcpy(sop->event_readset_out, sop->event_readset_in,
sop->event_fdsz);
memcpy(sop->event_writeset_out, sop->event_writeset_in,
sop->event_fdsz);
nfds = sop->event_fds+1;
EVBASE_RELEASE_LOCK(base, th_base_lock);
res = select(nfds, sop->event_readset_out,
sop->event_writeset_out, NULL, tv);
EVBASE_ACQUIRE_LOCK(base, th_base_lock);
...
i = random() % nfds;
for (j = 0; j < nfds; ++j) {
if (++i >= nfds)
i = 0;
res = 0;
if (FD_ISSET(i, sop->event_readset_out))
res |= EV_READ;
if (FD_ISSET(i, sop->event_writeset_out))
res |= EV_WRITE;
if (res == 0)
continue;
evmap_io_active(base, i, res);
}
check_selectop(sop);
return (0);
}
上面的代码中,先调用select获取fd的状态。注意一次并非返回一个fd,而操作两个fd的列表:读的fd列表,写的fd列表。接下来对select之后的队列进行操作,如果有读、写事件,则调用evmap_io_active在一个io map中登记,实际是将事件放到active队列中。此时只是登记,还没有调起事件对应的回调函数。
event_process_active
接下来分析如何调用事件对应的回调函数。回到event_base_dispatch(event_base_loop),从调用底层dispatch之后继续分析。到了最后调用了event_process_active。这个函数就是处理就绪队列的,就是它的内部实现调用了event关联的回调函数。event_process_active的处理流程是这样的:
event_process_active -> event_process_active_single_queue->(*ev->callback)(...)
[event.c]
static int event_process_active(struct event_base *base)
{
/* Caller must hold th_base_lock */
struct event_list *activeq = NULL;
int i, c = 0;
for (i = 0; i < base->nactivequeues; ++i) {
if (TAILQ_FIRST(&base->activequeues[i]) != NULL) {
base->event_running_priority = i;
activeq = &base->activequeues[i];
c = event_process_active_single_queue(base, activeq);
if (c < 0) {
base->event_running_priority = -1;
return -1;
} else if (c > 0)
break; /* Processed a real event; do not
* consider lower-priority events */
/* If we get here, all of the events we processed
* were internal. Continue. */
}
}
event_process_deferred_callbacks(&base->defer_queue,&base->event_break);
base->event_running_priority = -1;
return c;
}
遍历activequeues,对每个项(一个队列),处理此项。
static int
event_process_active_single_queue(struct event_base *base,
struct event_list *activeq)
{
struct event *ev;
int count = 0;
EVUTIL_ASSERT(activeq != NULL);
for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) {
if (ev->ev_events & EV_PERSIST)
event_queue_remove(base, ev, EVLIST_ACTIVE);
else
event_del_internal(ev);
switch (ev->ev_closure) {
case EV_CLOSURE_SIGNAL:
event_signal_closure(base, ev);
break;
case EV_CLOSURE_PERSIST:
event_persist_closure(base, ev);
break;
default:
case EV_CLOSURE_NONE:
EVBASE_RELEASE_LOCK(base, th_base_lock);
(*ev->ev_callback)(
ev->ev_fd, ev->ev_res, ev->ev_arg);
break;
}
...
if (base->event_break)
return -1;
if (base->event_continue)
break;
}
return count;
}
libevent2源码分析之四:libevent2的消息泵的更多相关文章
- zookeeper源码分析之四服务端(单机)处理请求流程
上文: zookeeper源码分析之一服务端启动过程 中,我们介绍了zookeeper服务器的启动过程,其中单机是ZookeeperServer启动,集群使用QuorumPeer启动,那么这次我们分析 ...
- RocketMQ源码分析之RocketMQ事务消息实现原理上篇(二阶段提交)
在阅读本文前,若您对RocketMQ技术感兴趣,请加入 RocketMQ技术交流群 根据上文的描述,发送事务消息的入口为: TransactionMQProducer#sendMessageInTra ...
- 【TencentOS tiny】深度源码分析(4)——消息队列
消息队列 在前一篇文章中[TencentOS tiny学习]源码分析(3)--队列 我们描述了TencentOS tiny的队列实现,同时也点出了TencentOS tiny的队列是依赖于消息队列的, ...
- Spark源码分析之四:Stage提交
各位看官,上一篇<Spark源码分析之Stage划分>详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交. Stage提交阶段的主要目的就一个,就是将每个S ...
- spark 源码分析之四 -- TaskScheduler的创建和启动过程
在 spark 源码分析之二 -- SparkContext 的初始化过程 中,第 14 步 和 16 步分别描述了 TaskScheduler的 初始化 和 启动过程. 话分两头,先说 TaskSc ...
- libevent2源码分析之五:关键的调用链
用一个调用链来表示函数调用的流程,看起来更直观.根据上面的分析,总结了一些重要的调用链. 初始化 event_base_new event_base_new_with_config min_heap_ ...
- libevent2源码分析之三:信号的初始化流程
libevent2对信号的响应也进行了封装,使之与socket操作一样对外提供统一的接口.这里的信号一般指linux的信号.由于信号与socket相关的编程接口有较大的不同,因此在内部实现也有一些区别 ...
- libevent2源码分析之一:前言
event的本质 libevent2中的event的本质是什么?只要是非同步阻塞的运行方式,肯定遵循事件的订阅-发布模型.通过event_new的函数原型可以理解,一个event即代表一次订阅,建立起 ...
- libevent2源码分析之二:初始化流程
本文并不很详细地分析初始化的各个细节,而重点分析如何将底层操作关联到event_base的相关字段.初始化工作主要是针对event_base的.libevent2支持多种底层实现,有epoll, se ...
随机推荐
- mysql的mysqladmin的用法
mysqladmin 适合于linux和windows系统 linux下:mysqladmin -u[username] -p[password] status windows下:先在安装目录找到my ...
- Centos 下,配置 Apache + Python + Django + postgresSQL 开发环境
用 Python 搭建一个 Web 服务器 文章结构 一.安装 Apache.Python.django 二.安装 mod_wsgi,Apache 为 Python 提供的 wsgi 模块 三.将 ...
- redis持久化的方法及对比
1.持久化的作用 redis所有的数据保持在内存中,对数据的更新将异步的保存到磁盘上. 两种方式: 2.RDB 2.1.概念 2.2.触发机制 2.2.1.save 同步 因为是同步命令,数据量大的话 ...
- HDU 6213 Chinese Zodiac 【模拟/水题/生肖】
Problem Description The Chinese Zodiac, known as Sheng Xiao, is based on a twelve-year cycle, each y ...
- HDU 3045 Picnic Cows
$dp$,斜率优化. 设$dp[i]$表示$1$至$i$位置的最小费用,则$dp[i]=min(dp[j]+s[i]-s[j]-(i-j)*x[j+1])$,$dp[n]$为答案. 然后斜率优化就可以 ...
- Codeforces Round #394 (Div. 2) C. Dasha and Password(简单DP)
C. Dasha and Password time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- 母亲的牛奶(milk) (BFS)
问题 A: 母亲的牛奶(milk) 时间限制: 1 Sec 内存限制: 64 MB提交: 14 解决: 8[提交][状态][讨论版] 题目描述 农民约翰有三个容量分别是A.B.C升的桶,A.B.C ...
- memcahced部署
Memcached是一个内存数据库,数据以key/value键值对的形式保存在服务器预先分配的内存区块中,由于Memcached服务自身没有对缓存的数据进行持久化存储的设计,因此,在服务器端的Memc ...
- 线程同步CriticalSection
孙鑫 第十五/十六课之四 线程同步CriticalSection 说明 在使用多线程时,一般很少有多个线程完全独立的工作.往往是多个线程同时操作一个全局变量来获取程序的运行结果.多个线程同时访问同一个 ...
- 【动态规划】【记忆化搜索】CODEVS 3415 最小和 CodeVS原创
f(l,r,i)表示第i段截第l位到第r位时,当前已经得到的价格最小值,可以很显然地发现,这个是没有后效性的,因为对之后截得的段都不造成影响. 注意水彩笔数=1的特判. 递归枚举当前段的r求解(∵l是 ...