原题链接在这里:https://leetcode.com/problems/knight-probability-in-chessboard/description/

题目:

On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).

A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.

Example:

Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

Note:

  • N will be between 1 and 25.
  • K will be between 0 and 100.
  • The knight always initially starts on the board.

题解:
类似Out of Boundary Paths.

DP问题. 求最后在board上的概率. 反过来想,走完K步棋子在board上的哪个位置呢. 反过来走, 看board上所有位置走完K步后能到初始位置(r,c)的数目和.

储存历史信息是走到当前这步时棋盘上能走到每个位置的不同走法.

递推时, 向所有方向移动, 若是还在board上就把自己的走法加到新位置的走法上.

初始化所有位置只有1种走法.

答案K步之后到初始位置的走法除以Math.pow(8,K).

Time Complexity: O(K*N^2).

Space: O(N^2).

AC Java:

 class Solution {
public double knightProbability(int N, int K, int r, int c) {
int [][] moves = {{1,2},{1,-2},{2,1},{2,-1},{-1,2},{-1,-2},{-2,1},{-2,-1}};
double [][] dp0 = new double[N][N];
for(double [] row : dp0){
Arrays.fill(row, 1);
} for(int step = 0; step<K; step++){
double [][] dp1 = new double[N][N];
for(int i = 0; i<N; i++){
for(int j = 0; j<N; j++){
for(int [] move : moves){
int row = i + move[0];
int col = j + move[1];
if(isIllegal(row, col, N)){
dp1[row][col] += dp0[i][j];
}
}
}
}
dp0 = dp1;
}
return dp0[r][c]/Math.pow(8,K);
} private boolean isIllegal(int row, int col, int len){
return row>=0 && row<len && col>=0 && col<len;
}
}

LeetCode 688. Knight Probability in Chessboard的更多相关文章

  1. LeetCode——688. Knight Probability in Chessboard

    一.题目链接:https://leetcode.com/problems/knight-probability-in-chessboard/ 二.题目大意: 给定一个N*N的棋盘和一个初始坐标值(r, ...

  2. leetcode 576. Out of Boundary Paths 、688. Knight Probability in Chessboard

    576. Out of Boundary Paths 给你一个棋盘,并放一个东西在一个起始位置,上.下.左.右移动,移动n次,一共有多少种可能移出这个棋盘 https://www.cnblogs.co ...

  3. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  4. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  5. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  6. 688. Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  7. [LeetCode] Knight Probability in Chessboard 棋盘上骑士的可能性

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  8. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  9. Knight Probability in Chessboard

    2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...

随机推荐

  1. Centos(Yum源更改)

    第一步:备份你的原镜像文件,以免出错后可以恢复. [root@openstack yum.repos.d]#mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum. ...

  2. PHP实现生成唯一编号(36进制的不重复编号)

    当我们要将一个庞大的数据进行编号时,而编号有位数限制,比如5位的车牌号.10位的某证件号码.订单流水号.短网址等等,我们可以使用36进制计算出符合位数的不重复的编号. 我们将0-Z(012345678 ...

  3. iOS 视频全屏功能 学习

    项目中,也写过类似"视频全屏"的功能, 前一阵子读到今日头条 的一篇技术文章,详细介绍三种旋转方法差异优劣最终择取.文章从技术角度看写的非常好,从用户角度看,也用过多家有视频功能的 ...

  4. 转:USB枚举

  5. http://www.uupoop.com/ps/

    网页版PS,在线PS 基本的PS功能都有,最重要的一点是快,网页版的嘛,哼哼!

  6. 在控制台中实现“单词竞猜”游戏 C# 猜词游戏

    场景 设计规则 a) 这是一个单人玩的游戏. b) 可以分三个级别,分别是高级.中级.低级.不同级别对应的单词系列也不一样.要求一旦玩家选定了要玩的级别,应当先提示它关于此级别最高分是多少,是谁创下的 ...

  7. indy10 UDP实例

    UDP就比较简单了,放个按钮,一个TIdUDPServerTIdUDPServer绑定 0.0.0.0:3820,然后Active设置为True //发送按钮procedure TForm1.Butt ...

  8. Java中的UDP协议编程

    一. UDP协议定义   UDP协议的全称是用户数据报,在网络中它与TCP协议一样用于处理数据包.在OSI模型中,在第四层——传输层,处于IP协议的上一层.UDP有不提供数据报分组.组装和不能对数据包 ...

  9. jsp 内置对象---EL

    ServletRequest : java.lang.String      getParameter(java.lang.String name) 返回一个string           对应 n ...

  10. 不理解use explanatory variables