[Contest20180405]抑制「超我」
古明地恋(koishi)和计算器(calculator)是好朋友。
恋恋有一个神奇的计算器,可以进行两个数在模$2^n$意义下的加法运算。计算器上有一个寄存器,一开始寄存器中的数为$0$,每当恋恋输入一个数,计算器就会把寄存器中的值与输入的数相加,并存在寄存器中(覆盖原有的值)。
计算器内部采用二进制进行数的存储,两个数相加时,它会按照二进制加法的规则,从低位到高位依次相加、进位,并舍弃掉最后多出来的第$n+1$位。由于年久失修,计算器上的某些数位出了点小故障,这些数位上不会发生进位。也就是说,在加法的过程中,如果这个数位上的值超过了$1$,它会对$2$取模,而下一个数位却不会$+1$(显然第$n$位是否故障并没有多大区别,为了方便我们钦定它一定故障)。
恋恋会不停地向计算器输入数字。每次,她会在$[0,2^n)$的范围内随机选取一个数进行输入。这里每个数被选取的概率与它的数值大小成正比,也就是说,$x$被选中的概率为$\begin{align*}\dfrac x{\sum\limits_{i=0}^{2^n−1}i}\end{align*}$。每当恋恋输入完一个数,她会有$\dfrac{998244354−p}{998244354}$的概率感到厌倦,否则她会继续重复这一过程,直到她厌倦为止。现在,恋恋想知道在她感到厌倦之后,寄存器中的数的期望值是多少,答案对$998244353$取模。
每一段$0\cdots01$互不影响,可以分开计算答案,假设当前要计算一段长度为$m$的区间的答案
设$p_i$表示输入$i$的概率,构造多项式$\begin{align*}A(x)=\sum\limits_{i=0}^\infty p_ix^i\end{align*}$,那么$[x^k]\begin{align*}\sum\limits_{i=0}^\infty(1-p)p^iA^{i+1}(x)\end{align*}$就是最后和为$k$的概率(枚举恋恋在第$i$次加法时停止)注意这里的下标要模$2^m$,也就是说多项式乘法是循环卷积
等比数列求和一下,我们得到答案为$[x^k]\dfrac{(1-p)A(x)}{1-pA(x)}$,因为是循环卷积,所以直接用点值计算是可行的,就不用写多项式求逆了
#include<stdio.h>
#include<string.h>
const int mod=998244353;
typedef long long ll;
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
void inc(int&a,int b){a=ad(a,b);}
int pow(int a,int b){
int s=1;
while(b){
if(b&1)s=mul(s,a);
a=mul(a,a);
b>>=1;
}
return s;
}
int rev[1100010],N,iN;
void pre(int n){
int i,k;
for(N=1,k=0;N<n;N<<=1)k++;
for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
iN=pow(N,mod-2);
}
void swap(int&a,int&b){a^=b^=a^=b;}
void ntt(int*a,int on){
int i,j,k,t,w,wn;
for(i=0;i<N;i++){
if(i<rev[i])swap(a[i],a[rev[i]]);
}
for(i=2;i<=N;i<<=1){
wn=pow(3,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i));
for(j=0;j<N;j+=i){
w=1;
for(k=0;k<i>>1;k++){
t=mul(w,a[i/2+j+k]);
a[i/2+j+k]=de(a[j+k],t);
inc(a[j+k],t);
w=mul(w,wn);
}
}
}
if(on==-1){
for(i=0;i<N;i++)a[i]=mul(a[i],iN);
}
}
int f[1100010];
char s[30];
int main(){
int n,p,i,j,las,al,rl,ans;
scanf("%d%d%s",&n,&p,s+1);
las=0;
al=(1<<n)-1;
rl=pow((al+1)*(ll)al/2%mod,mod-2);
ans=0;
for(i=1;i<=n;i++){
if(s[i]=='1'){
pre(1<<(i-las));
memset(f,0,sizeof(f));
for(j=0;j<=al;j++)inc(f[(j&((1<<i)-1))>>las],mul(j,rl));
ntt(f,1);
for(j=0;j<N;j++)f[j]=mul(mul(1-p,f[j]),pow(1-mul(p,f[j]),mod-2));
ntt(f,-1);
for(j=0;j<N;j++)inc(ans,mul(j<<las,f[j]));
las=i;
}
}
printf("%d",(ans+mod)%mod);
}
[Contest20180405]抑制「超我」的更多相关文章
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- 「译」JUnit 5 系列:条件测试
原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- JavaScript OOP 之「创建对象」
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...
- 「C++」理解智能指针
维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...
- 「JavaScript」四种跨域方式详解
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...
- 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- 「2014-3-17」C pointer again …
记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...
随机推荐
- NOIP2003 神经网络(bfs)
NOIP2003 神经网络 题目背景: 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应 ...
- maven与gradle的对比
Java世界中主要有三大构建工具:Ant.Maven和Gradle.经过几年的发展,Ant几乎销声匿迹.Maven也日薄西山,而Gradle的发展则如日中天.笔者有幸见证了Maven的没落和Gradl ...
- ubuntu安装GraphicsMagick
一. sudo apt-get install graphicsmagick 二. http://www.cnblogs.com/cocowool/archive/2010/08/16/1800954 ...
- C# 序列化理解 1(转)
序列化又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.其目的是以某种存储形成使自定义对象持久化,或者将这种对象从一个地方传输到另一个地方. .NET框架提供了两种串行化的方式: ...
- Struts2 内建的验证规则
Struts2 内建的验证规则 conversion validator:转换验证器 date validator:日期验证器 double validator:浮点验证器 email validat ...
- 图论:费用流-SPFA+EK
利用SPFA+EK算法解决费用流问题 例题不够裸,但是还是很有说服力的,这里以Codevs1227的方格取数2为例子来介绍费用流问题 这个题难点在建图上,我感觉以后还要把网络流建模想明白才能下手去做这 ...
- JVM 性能排查--查看哪个对象占用内存大
参考:http://blog.csdn.net/chenleixing/article/details/44227327/ 1. 在IE地址栏中输入:http://localhost/test/in ...
- python3 进程_multiprocessing模块
'''多进程优点:可以利用多核,实现并行运算缺点:1.开销太大: 2.通信困难使用方式跟开多线程一样''' 多进程 import multiprocessing import time,os def ...
- 如何在本机搭建SVN服务器【转】
转自:http://www.cnblogs.com/loveclumsybaby/archive/2012/08/21/2649353.html 目的:在没有正式的SVN服务器的情况下,完成代码的本地 ...
- Grunt环境搭建及使用 前端必备
jQuery在使用grunt,bootstrap在使用grunt,百度UEditor在使用grunt,你没有理由不学.不用! 1. 前言 各位web前端开发人员,如果你现在还不知道grunt或者听说过 ...