选自《费马大定理:一个困惑了世间智者358年的谜》,有少许改动。
原译者:薛密

\(\sqrt{2}\)是无理数,即不能写成一个分数。欧几里得以反证法证明此结论。第一步是假定相反的事实是真的,即\(\sqrt{2}\)可以写成某个未知的分数。用\(\frac{p}{q}\) 来代表这个假设的分数,其中 \(p\) 和 \(q\) 是两个整数。

在开始证明本身之前,需要对分数和偶数的某些性质有个基本的了解。

(1) 如果任取一个整数并且用2去乘它,那么得到的新数一定是偶数。这基本上就是偶数的定义。

(2) 如果已知一个整数的平方是偶数,那么这个整数本身一定是偶数。

(3) 最后,分数可以简化。例如分数\(\frac{16}{24}\),用2除分子分母得\(\frac{8}{12}\),两个分数\(\frac{16}{24}\)与\(\frac{8}{12}\)是相等的,进一步,\(\frac{8}{12}\)与\(\frac{4}{6}\) 是相等的,而\(\frac{4}{6}\) 又与\(\frac{2}{3}\)是相等的。然而,\(\frac{2}{3}\)不能再化简,因为2 和3没有公因数。不可能将一个分数永远不断地简化。

欧几里得相信\(\sqrt{2}\)不可能写成一个分数。然而,由于他采用反证法,所以他先假定

\begin{equation*}\sqrt{2}=\frac{p}{q}\end{equation*}

将两边平方,得

\begin{equation*}2=\frac{p^2}{q^2}\end{equation*}

\begin{equation*}2q^2=p^2\end{equation*}

现在根据第(1) 点我们知道\(p^2\) 必定是偶数。此外,根据第(2) 点我们知道 \(p\) 本身也必须是偶数。但是,如果 \(p\) 是偶数,那么它可以写成\(2m\),其中\(m\) 是某个别的整数。这是从第(1) 点可以得出的结论。将这再代回到等式中,我们得到

\begin{equation*}2q^2=p^2=(2m)^2=4m^2\end{equation*}

两边除以2,得

\begin{equation*}q^2=2m^2\end{equation*}

但是根据我们前面用过的同样的论证,我们知道 \(q^2\) 必须是偶数,因而 \(q\) 本身必须是偶数。如果确实是这样,那么 \(q\) 可以写成\(2n\),其中 \(n\) 是某个别的整数。如果我们回到开始的地方,那么

\begin{equation*}\sqrt{2}=\frac{p}{q}=\frac{2m}{2n}=\frac{m}{n}\end{equation*}

现在我们得到一个新的分数\(\frac{m}{n}\),它比\(\frac{p}{q}\)更简单。

然而,我们发现对\(\frac{m}{n}\)我们可以精确地重复以上同一个过程,在结束时我们将产生一个更简单的分数,比方说\(\frac{g}{h}\)。然后又可以对这个分数再重复相同的过程,而新的更为简单的分数,比方说\(\frac{e}{f}\)将是。我们可以对它再作同样的处理,并且一次次地重复这个过程,不会结束。但是根据第(3) 点我们知道任何分数不可能永远简化下去,总是必须有一个最简单的分数存在,而我们最初假定的分数\(\frac{p}{q}\) 似乎不服从这条法则。于是,我们可以有正当的理由说我们得出了矛盾。如果\(\sqrt{2}\)可以写成为一个分数,其结果将是不合理的,所以,说\(\sqrt{2}\)不可能写成一个分数是对的。于是,\(\sqrt{2}\)是一个无理数。

欧几里得证明$\sqrt{2}$是无理数的更多相关文章

  1. <数论相关>欧几里得与拓展欧几里得证明及应用

    欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...

  2. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  3. POJ2677 Tour(DP+双调欧几里得旅行商问题)

    Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3929   Accepted: 1761 Description ...

  4. URAL1204. Idempotents(扩展欧几里得)

    1204 大体推推 会出来这个式子 x(x-1) = k*n;n = p*q ;x(x-1)%(p*q)==0; 因为p,q都为素数 那也就是说x和x-1中必定包含这两个数 而且一个里面只能有一个 不 ...

  5. 欧几里得旅行商问题 java与c++实现

    双调欧几里得旅行商问题是一个经典动态规划问题.<算法导论(第二版)>思考题15-1 旅行商问题描述:平面上n个点,确定一条连接各点的最短闭合旅程.这个解的一般形式为NP的(在多项式时间内可 ...

  6. [POJ1845&POJ1061]扩展欧几里得应用两例

    扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...

  7. 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS

    [bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...

  8. bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】

    第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...

  9. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

随机推荐

  1. PHP扩展——C扩展实现滚动记录日志

    前言 万事开头难,没错就是这样!! 在没有真正开发PHP扩展之前,一直觉得PHP扩展开发对我来说是一个很遥远的事情,虽然自己有些C\C++基础,但是看PHP源码的时候还是很吃力,现在看来主要还是没有下 ...

  2. RabbitMQctl命令

    RabbitMQControl RabbitMQ提供了可视化的网页供我们进行一些配置与操作,但是ctl的命令比UI来的专业的多,一些UI无法完成的操作就需要使用ctl命令来进行处理了 这里是官方的文档 ...

  3. Unity连Photon服务器入门详解

    Photon是目前比较好用的游戏服务器.目前网上对于Photon的服务器讲解比较少,最近也对Photon做了初步的了解,做一个极其详细的入门. 首先就是得下载Photon咯 https://www.p ...

  4. django admin中保存添加的数据提示need string or buffer, int found

    原因 def __unicode__(self): return unicode(self.pk) 此处如果没有unicode就会报这个错误,原因就是编码错误 以为是文件开始没有加utf-8导致的,然 ...

  5. VC++ 比较两个字符串是否相等,字母大小写相关。

    1.strcmp 这是用于ANSI标准字符串的函数(如string和char *),此函数接受两个字符串缓冲区做为参数,如果两个字符串是相同的则返回零.否则若第一个传入的字符串的值大于第二个字符串返回 ...

  6. primefaces 通过selectOneMenu更新显示隐藏区域

    最重要的是update的区域要指定整个panel,而不是想更新的那个组件 <h:form id="frm"> <h:panelGrid id="pane ...

  7. Linux rsync网站目录同步功能的实现

    实现目标: 172.16.1.64服务器上的/var/www/sw_service目录,与172.16.1.60服务器上的/var/www/sw_service目录实现同步, 即1.60主动向1.64 ...

  8. Linux下python升级至2.7

    1. 下载python源码包 wget http://www.python.org/ftp/python/2.7.3/Python-2.7.3.tgz2. 解压 tar -xjf Python-2.7 ...

  9. vmware下linux系统的安装过程

    虚拟机VMware下CentOS6.6安装教程图文详解 [日期:2016-05-24] 来源:Linux社区  作者:Sungeek [字体:大 中 小]   分享下,虚拟机VMware下CentOS ...

  10. Android应用内语言切换实现(转)

    使用Java反射机制 IActivityManager与ActivityManagerNative都是非公开类,使用Java反射去调用其中的方法. 第一步.使用Android开放的api更改Confi ...