思路:发现如果一个人一共选了x个点,那么选中某一个点对的概率都是一样的,一个人选x个点的总方案是C(n,x),一个人选中某个点对的总方案是C(n-2,x-2),这样,那么选中某个点对的概率就是 x*(x-1)/(n*(n-1)),这样,我们就用树分治求出有多少对符合条件的对数,然后乘上每个人的概率即可。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define inf 0x7fffffff
int son[],F[],root,vis[],pd[],c[];
int n,go[],tot,first[],next[],dis[],num,sz,m,b[];
int ans,cnt[];
double Ans;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int x,int y){
tot++;
go[tot]=y;
next[tot]=first[x];
first[x]=tot;
}
void add(int x,int y){
insert(x,y);insert(y,x);
}
void findroot(int x,int fa){
son[x]=;F[x]=;
for (int i=first[x];i;i=next[i]){
int pur=go[i];
if (vis[pur]||pur==fa) continue;
findroot(pur,x);
son[x]+=son[pur];
F[x]=std::max(F[x],son[pur]);
}
F[x]=std::max(F[x],num-son[x]);
if (F[x]<F[root]) root=x;
}
void bfs(int x){
int h=,t=;c[h]=x;pd[x]=sz;dis[x]=;
while (h<=t){
int now=c[h++];
for (int i=first[now];i;i=next[i]){
int pur=go[i];
if (vis[pur]||pd[pur]) continue;
pd[pur]=sz;
dis[pur]=dis[now]+;
c[++t]=pur;
}
}
for (int j=;j<=m;j++)
for (int i=;i<=t;i++)
if (b[j]>=dis[c[i]])
ans+=cnt[b[j]-dis[c[i]]];
for (int i=;i<=t;i++)
cnt[dis[c[i]]]++;
}
void solve(int x,int fa){
vis[x]=;sz++;
memset(cnt,,sizeof cnt);cnt[]=;
for (int i=first[x];i;i=next[i]){
int pur=go[i];
if (vis[pur]) continue;
bfs(pur);
}
int Sum=num;
for (int i=first[x];i;i=next[i]){
int pur=go[i];
if (vis[pur]) continue;
if (son[pur]>son[x]) num=Sum-son[x];
else num=son[pur];
root=;
findroot(pur,);
solve(root,x);
}
}
int main(){
n=read();m=read();
for (int i=;i<=m;i++){
b[i]=read();
}
std::sort(b+,b++m);
for (int i=;i<n;i++){
int u=read(),v=read();
add(u,v);
}
F[]=inf;root=;num=n;
findroot(,);
solve(root,);
double Ans=(((double)ans)/((double)n))/((double)n-);
int m=n/;
if (n%) printf("%.2lf\n",Ans*(m+)*(m));
else printf("%.2lf\n",Ans*(m-)*m);
if (n%==) printf("%.2lf\n",Ans*(m+)*(m));
else printf("%.2lf\n",Ans*(m-)*m);
printf("%.2lf\n",Ans*(m-)*m);
}

FJ省队集训最终测试 T2的更多相关文章

  1. FJ省队集训最终测试 T3

    思路:状态压缩dp,f[i][j[[k]代表i行j列这个格子,连续的状态为k,这个连续的状态是什么?就是下图 X格子代表我当前走到的地方,而这里的状态就是红色部分,也就是连续的一段n的状态,我们是分每 ...

  2. FJ省队集训DAY4 T2

    XXX #include<cstdio> #include<iostream> #include<cmath> #include<cstring> #i ...

  3. FJ省队集训DAY3 T2

    思路:如果一个DAG要的路径上只要一条边去切掉,那么要怎么求?很容易就想到最小割,但是如果直接做最小割会走出重复的部分,那我们就这样:反向边设为inf,这样最小割的时候就不会割到了,判断无解我们直接用 ...

  4. FJ省队集训DAY2 T2

    思路:我们可以考虑三角剖分,这样问题就变成考虑三角形的选取概率和三角形内有多少个点了. 先用树状数组预处理出三角剖分的三角形中有多少个点,然后用线段树维护,先用原点极角排序,然后枚举i,再以i极角排序 ...

  5. FJ省队集训DAY3 T1

    思路:我们考虑如果取掉一个部分,那么能影响到最优解的只有离它最近的那两个部分. 因此我们考虑堆维护最小的部分,离散化离散掉区间,然后用线段树维护区间有没有雪,最后用平衡树在线段的左右端点上面维护最小的 ...

  6. FJ省队集训DAY2 T1

    思路:转换成n条三维空间的直线,求最大的集合使得两两有交点. 有两种情况:第一种是以某2条直线为平面,这时候只要统计这个平面上有几条斜率不同的直线就可以了 还有一种是全部交于同一点,这个也只要判断就可 ...

  7. FJ省队集训DAY1 T1

    题意:有一堆兔子,还有一个r为半径的圆,要求找到最大集合满足这个集合里的兔子两两连边的直线不经过圆. 思路:发现如果有两个点之间连边不经过圆,那么他们到圆的切线会构成一段区间,那么这两个点的区间一定会 ...

  8. FJ省队集训DAY4 T3

    #include<cstdio> #include<iostream> #include<cmath> #include<cstring> #inclu ...

  9. FJ省队集训DAY5 T1

    思路:考试的时候打了LCT,自以为能过,没想到只能过80.. 考完一想:lct的做法点数是100W,就算是nlogn也会T. 讲一下lct的做法把:首先如果一条边连接的两个点都在同一个联通块内,那么这 ...

随机推荐

  1. mySql控制流程的函数

    1.select case value then result else value end; 在第一个方案的返回结果中, value=compare-value.而第二个方案的返回结果是第一种情况的 ...

  2. 虚拟机LUN扩大后,重新分区

    [root@ywcrmdb ~]# fdisk -l Disk /dev/sda: 751.6 GB, 751619276800 bytes 255 heads, 63 sectors/track, ...

  3. Linux系统编程(35)—— socket编程之TCP服务器的并发处理

    我们知道,服务器通常是要同时服务多个客户端的,如果我们运行上一篇实现的server和client之后,再开一个终端运行client试试,新的client就不能能得到服务了.因为服务器之支持一个连接. ...

  4. 【转】Java 集合系列16之 HashSet详细介绍(源码解析)和使用示例--不错

    原文网址:http://www.cnblogs.com/skywang12345/p/3311252.html 概要 这一章,我们对HashSet进行学习.我们先对HashSet有个整体认识,然后再学 ...

  5. HDU_2050——折线分割平面问题,递推

    Problem Description 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可以将平面 ...

  6. Codeforce 222 div1

    A 假设只有一个连通块,任选一个点入队,按bfs/dfs序删除即可. trick: 要考虑有多个连通块的情况,不一定无解. #define rep(i,n) for(int i=0 ; i<(n ...

  7. Java 8 默认方法和多继承深入解析

    以前经常谈论的Java对比c++的一个优势是Java中没有多继承的问题. 因为Java中子类只能继承(extends)单个父类, 尽管可以实现(implements)多个接口,但是接口中只有抽象方法, ...

  8. 简单的HDFS思维导图

  9. FIR滤波器设计

    FIR滤波器的优越性: 相位对应为严格的线性,不存在延迟失真,仅仅有固定的时间延迟: 因为不存在稳定性问题,设计相对简单: 仅仅包括实数算法,不涉及复数算法,不须要递推运算,长度为M,阶数为M-1,计 ...

  10. Shell-WEB目录监控

    #!/bin/sh #date:2015-12-08 #filename:check_webfile.sh #作者:李兴利 #Email:1162572407@qq.com #version:v1.1 ...