Logistic回归基础篇之梯度上升算法
代码示例:
import numpy as np
import matplotlib.pyplot as plt def loadDataSet():
dataMat = [];labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
fr.close()
return dataMat,labelMat def sigmoid(intX):
return 1.0/(1+np.exp(-intX)) def gradAscent(dataMatIn,classLabels):
dataMatrix = np.mat(dataMatIn)
labelMat = np.mat(classLabels).transpose()
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = labelMat - h
weights += alpha * dataMatrix.transpose() * error
return weights def plotBestFit(weights):
dataMat,labelMat = loadDataSet()
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = np.arange(-3.0,3.0,0.1)
y = (-weights[0] - weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1');plt.ylabel('X2')
plt.show() if __name__ == '__main__':
dataMat,labelMat = loadDataSet()
weights = gradAscent(dataMat,labelMat)
plotBestFit(weights)
运行结果:

参考博客:https://cuijiahua.com/blog/2017/11/ml_6_logistic_1.html
Logistic回归基础篇之梯度上升算法的更多相关文章
- Logistic回归实战篇之预测病马死亡率
利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...
- Logistic回归与梯度上升算法
原创作品出处 原始出处 .作者信息和本声明.否则将追究法律责任.http://sbp810050504.blog.51cto.com/2799422/1608064 Logistic回归与梯度上升算法 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- Logistic回归,梯度上升算法理论详解和实现
经过对Logistic回归理论的学习,推导出取对数后的似然函数为 现在我们的目的是求一个向量,使得最大.其中 对这个似然函数求偏导后得到 根据梯度上升算法有 进一步得到 我们可以初始化向量为0,或者随 ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- Logistic回归算法梯度公式的推导
最近学习Logistic回归算法,在网上看了许多博文,笔者觉得这篇文章http://blog.kamidox.com/logistic-regression.html写得最好.但其中有个关键问题没有讲 ...
- 回归——线性回归,Logistic回归,范数,最大似然,梯度,最小二乘……
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度 ...
随机推荐
- Centos7——docker入门(笔记)
docker 入门(笔记) 一.Docker是什么? 官方原话: Docker provides a way to run applications securely isolated in a co ...
- 对abel 转译 class 过程的研究----------------------引用
作为当下最流行的 JavaScript 编译器,Babel 替我们转译 ECMAScript 语法,而我们不用再担心如何进行向后兼容. 零.前言 虽然在 JavaScript 中对象无处不在,但这门语 ...
- SEO搜索引擎优化是什么?
㈠什么是SEO? 搜索引擎优化,又称为SEO,即Search Engine Optimization,它是一种通过分析搜索引擎的排名规律,了解各种搜索引擎怎样进行搜索.怎样抓取互联网页面.怎样确定特定 ...
- cursor(鼠标手型)属性
㈠简单介绍 在浏览网页时,通常看到的鼠标光标形状有箭头.手形.沙漏等,而在 windows 中实际看到的鼠标指针种类比这个还要多. 一般情况下,鼠标光标的形状由浏览器负责控制,大多数情况的光标形状为箭 ...
- C++ - extern “C”含义深层探索
C和C++函数的相互引用原文地址:http://blog.csdn.net/wfwd/archive/2006/05/30/763734.aspx=========================== ...
- Selenium 日期控件处理
在WEB测试时,我们会碰到需要输入日期的情况,如果输入框能直接输入,那最好不过了.但是很多时候,输入框是不可输入的,必须的点击日期控件才行. 现在就来聊聊对日期控件的两种操作方法,我们以12306网站 ...
- R_Studio(时序)Apriori算法寻找频繁项集的方法
应用ARIMA(1,1,0)对2015年1月1日到2015年2月6日某餐厅的销售数量做为期5天的预测 setwd('D:\\dat') #install.packages("forecast ...
- JavaWeb_Get和Post方法传输数据区别
Get方法和Post方法传输数据区别: 传送门 GET在浏览器回退时是无害的,而POST会再次提交请求 GET产生的URL地址可以被Bookmark,而POST不可以 GET请求会被浏览器主动cach ...
- R_Studio(学生成绩)绘制频率分布直方图、分布饼图、折线比较图
对“Gary.csv”中的成绩数据进行分布分析 (1)按0-59,60-69,70-79,80-89,90-100分组绘制高级语言程序设计成绩的频率分布直方图. (2)按0-59,60-69,70-7 ...
- Spark指标项监控
监控配置 spark的监控主要分为Master.Worker.driver.executor监控.Master和Worker的监控在spark集群运行时即可监控,Driver和Excutor的监控需要 ...