Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)
Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wanted to give her an affectionate gift but couldn't think of anything inventive. Hence, he will be giving her a graph. How original, Bob! Alice will surely be thrilled!
When building the graph, he needs four conditions to be satisfied:
It must be a simple undirected graph, i.e. without multiple (parallel) edges and self-loops.
The number of vertices must be exactly n — a number he selected. This number is not necessarily prime.
The total number of edges must be prime.
The degree (i.e. the number of edges connected to the vertex) of each vertex must be prime.
Below is an example for n=4. The first graph (left one) is invalid as the degree of vertex 2 (and 4) equals to 1, which is not prime. The second graph (middle one) is invalid as the total number of edges is 4, which is not a prime number. The third graph (right one) is a valid answer for n=4.
Note that the graph can be disconnected.
Please help Bob to find any such graph!
Input
The input consists of a single integer n (3≤n≤1000) — the number of vertices.
Output
If there is no graph satisfying the conditions, print a single line containing the integer −1.
Otherwise, first print a line containing a prime number m (2≤m≤n(n−1)2) — the number of edges in the graph. Then, print m lines, the i-th of which containing two integers ui, vi (1≤ui,vi≤n) — meaning that there is an edge between vertices ui and vi. The degree of each vertex must be prime. There must be no multiple (parallel) edges or self-loops.
If there are multiple solutions, you may print any of them.
Note that the graph can be disconnected.
Examples
Input
4
Output
5
1 2
1 3
2 3
2 4
3 4
Input
8
Output
13
1 2
1 3
2 3
1 4
2 4
1 5
2 5
1 6
2 6
1 7
1 8
5 8
7 8
Note
The first example was described in the statement.
In the second example, the degrees of vertices are [7,5,2,2,3,2,2,3]. Each of these numbers is prime. Additionally, the number of edges, 13, is also a prime number, hence both conditions are satisfied.
题意:
让你构造一个n个接点的图,使其边的总个数是质数,每一个节点的度数也是质数。
思路:
利用一个性质 n~n+n/2 这个区间里,必定有一个数是质数。
那么我们可以先把图连成一个圆环,现在边的个数是n。
如果当前边的个数不是质数,那么从1开始,在圆环中加入1与它在圆环中的对面节点1+n/2 连接而成的边。
还不是质数就加入2与对面节点的边,这样可以最多加到 n+n/2个边,根据上面的性质我们可以知道,这个过程中必有边数sum是质数的。
有因为这个过程中每一个节点的度数是2或者3. 所以整体是满足条件的。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// const int maxn = 1e7+50;
bool noprime[maxn + 50];
vector <int> p;
void getPrime()
{
// 华丽的初始化
memset(noprime, false, sizeof(noprime));
p.clear();
int m = (int)sqrt(maxn + 0.5);
// 优化的埃筛
for (int i = 2; i <= m; i++)
{
if (!noprime[i])
{
for (int j = i * i; j <= maxn; j += i)
{
noprime[j] = true;
}
}
}
}
std::vector<pii> v;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
getPrime();
int n;
gbtb;
cin >> n;
if (!noprime[n])
{
cout << n << endl;
repd(i, 2, n)
{
cout << i << " " << i - 1 << endl;
}
cout << 1 << " " << n << endl;
} else
{
int ans = n;
int t = ans;
while (noprime[t])
{
t++;
}
cout << t << endl;
repd(i, 2, n)
{
cout << i << " " << i - 1 << endl;
}
cout << 1 << " " << n << endl;
int id = 1;
while (noprime[ans])
{
ans++;
cout << id << " " << id + n / 2 << endl;
id++;
}
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)的更多相关文章
- Codeforces Global Round 8 C. Even Picture(构造)
题目链接:https://codeforces.com/contest/1368/problem/C 题意 构造一个只含有灰.白块的网格,要求: 所有灰块为一个连通块 每个灰块与偶数个灰块相邻 恰有 ...
- CodeForces Global Round 1
CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...
- Codeforces Global Round 1 - D. Jongmah(动态规划)
Problem Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...
- Codeforces Global Round 2 题解
Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...
- Codeforces Global Round 1 (A-E题解)
Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...
- Codeforces Global Round 3
Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...
- Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)
Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...
- 【手抖康复训练1 】Codeforces Global Round 6
[手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...
- Codeforces Global Round 11 个人题解(B题)
Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...
随机推荐
- python MySQLdb 如何设置读超时read_timeout
在python中,经常用到 MySQLdb操作MySQL数据库. 在实现上,MySQLdb并不是纯python的,而是封装了MySQL C API库_mysql. 对于MySQLdb是否支持read_ ...
- PE盘制作
我这里以大白菜为例来讲解这个一条龙的服务: 1.去大白菜官网下载一U盘制作工具: 2.准备一个4G以上的U盘(我这里建议16G比较好,这样制作完成之后,我们还可以拷贝几个常用的镜像进去,方便今后使用) ...
- HTML+CSS实现导航栏二级下拉菜单完整代码
工具是vs code 代码如下 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...
- mysql允许外网访问 和修改mysql 账号密码
mysql的root账户,我在连接时通常用的是localhost或127.0.0.1,公司的测试服务器上的mysql也是localhost所以我想访问无法访问,测试暂停. 解决方法如下: 1,修改表, ...
- Python字符和字符值(ASCII或Unicode码值)转换方法
Python字符和字符值(ASCII或Unicode码值)转换方法 这篇文章主要介绍了Python字符和字符值(ASCII或Unicode码值)转换方法,即把字符串在ASCII值或者Unicode值之 ...
- MySQL 常用工具sysbench/fio/tpcc等测试
为什么要压力测试采购新设备,评估新设备性能开发新项目,评估数据库容量新系统上线前,预估/模拟数据库负载更换数据库版本,评估性能变化 关注指标 CPU %wait,%user,%sys 内存 只内存读 ...
- slideToggle()---单击隐藏/浮现--jQuery--click() 方法
click() 方法 模块隐藏/浮现 <html> <head> <script type="text/javascript" src="/ ...
- UML_2_浅谈UML的概念和模型之UML九种图
转载:https://my.oschina.net/zhumenzhongren/blog/667353 上文我们介绍了,UML的视图,在每一种视图中都包含一个或多种图.本文我们重点讲解UML每种图的 ...
- python学习之模块-模块(一)
第五章 5.1 自定义模块 模块概念: 把一些常用的函数放在一个py文件中,这个文件就称之为模块. 模块的意义: 1.方便管理.让程序的解构更加清晰,实现功能的重复使用: 2.提升开发效率 ...
- SQL注入(bool型)
sqli-labs 靶场https://blog.csdn.net/qq_41420747/article/details/81836327 教程+靶场 1. https://blog.csdn.ne ...