Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wanted to give her an affectionate gift but couldn't think of anything inventive. Hence, he will be giving her a graph. How original, Bob! Alice will surely be thrilled!

When building the graph, he needs four conditions to be satisfied:

It must be a simple undirected graph, i.e. without multiple (parallel) edges and self-loops.

The number of vertices must be exactly n — a number he selected. This number is not necessarily prime.

The total number of edges must be prime.

The degree (i.e. the number of edges connected to the vertex) of each vertex must be prime.

Below is an example for n=4. The first graph (left one) is invalid as the degree of vertex 2 (and 4) equals to 1, which is not prime. The second graph (middle one) is invalid as the total number of edges is 4, which is not a prime number. The third graph (right one) is a valid answer for n=4.

Note that the graph can be disconnected.

Please help Bob to find any such graph!

Input

The input consists of a single integer n (3≤n≤1000) — the number of vertices.

Output

If there is no graph satisfying the conditions, print a single line containing the integer −1.

Otherwise, first print a line containing a prime number m (2≤m≤n(n−1)2) — the number of edges in the graph. Then, print m lines, the i-th of which containing two integers ui, vi (1≤ui,vi≤n) — meaning that there is an edge between vertices ui and vi. The degree of each vertex must be prime. There must be no multiple (parallel) edges or self-loops.

If there are multiple solutions, you may print any of them.

Note that the graph can be disconnected.

Examples

Input

4

Output

5

1 2

1 3

2 3

2 4

3 4

Input

8

Output

13

1 2

1 3

2 3

1 4

2 4

1 5

2 5

1 6

2 6

1 7

1 8

5 8

7 8

Note

The first example was described in the statement.

In the second example, the degrees of vertices are [7,5,2,2,3,2,2,3]. Each of these numbers is prime. Additionally, the number of edges, 13, is also a prime number, hence both conditions are satisfied.

题意:

让你构造一个n个接点的图,使其边的总个数是质数,每一个节点的度数也是质数。

思路:

利用一个性质 n~n+n/2 这个区间里,必定有一个数是质数。

那么我们可以先把图连成一个圆环,现在边的个数是n。

如果当前边的个数不是质数,那么从1开始,在圆环中加入1与它在圆环中的对面节点1+n/2 连接而成的边。

还不是质数就加入2与对面节点的边,这样可以最多加到 n+n/2个边,根据上面的性质我们可以知道,这个过程中必有边数sum是质数的。

有因为这个过程中每一个节点的度数是2或者3. 所以整体是满足条件的。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
// const int maxn = 1e7+50;
bool noprime[maxn + 50];
vector <int> p;
void getPrime()
{
// 华丽的初始化
memset(noprime, false, sizeof(noprime));
p.clear(); int m = (int)sqrt(maxn + 0.5);
// 优化的埃筛
for (int i = 2; i <= m; i++)
{
if (!noprime[i])
{
for (int j = i * i; j <= maxn; j += i)
{
noprime[j] = true;
}
}
} }
std::vector<pii> v; int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
getPrime();
int n;
gbtb;
cin >> n;
if (!noprime[n])
{
cout << n << endl;
repd(i, 2, n)
{
cout << i << " " << i - 1 << endl;
}
cout << 1 << " " << n << endl;
} else
{
int ans = n;
int t = ans;
while (noprime[t])
{
t++;
}
cout << t << endl;
repd(i, 2, n)
{
cout << i << " " << i - 1 << endl;
}
cout << 1 << " " << n << endl; int id = 1;
while (noprime[ans])
{
ans++;
cout << id << " " << id + n / 2 << endl;
id++;
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)的更多相关文章

  1. Codeforces Global Round 8 C. Even Picture(构造)

    题目链接:https://codeforces.com/contest/1368/problem/C 题意 构造一个只含有灰.白块的网格,要求: 所有灰块为一个连通块 每个灰块与偶数个灰块相邻 恰有 ...

  2. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  3. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  4. Codeforces Global Round 2 题解

    Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...

  5. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  6. Codeforces Global Round 3

    Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...

  7. Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)

    Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...

  8. 【手抖康复训练1 】Codeforces Global Round 6

    [手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...

  9. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

随机推荐

  1. Win7、win8、win10下实现精准截获Explorer拷贝行为

    介绍了windows下对Explorer的拷贝动作的精确截获,这个在企业数据安全dlp产品系列中减少审计的噪音很有效,方便运营人员做针对性的审计. 在企业数据安全中我通常需要监测用户的拷贝行为,特别像 ...

  2. pandas中根据列的值选取多行数据

    # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column ...

  3. 【推荐算法工程师技术栈系列】程序语言--Java

    目录 JDK 初步 ArrayList LinkedList Vector Stack HashMap Hashtable LinkedHashMap TreeMap HashSet LinkedHa ...

  4. 修改了Mysql密码后连接不到服务且无报错信息解决方法以及修改密码方法

    安装MYSQL后更改了root的密码后用 net start mysql 启动时出现:无法启动,无报错信息 使用以下命令:1.管理员方式cmd进入mysql安装目录的bin目录下2.执行命令:mysq ...

  5. c++ tcp 服务器和客户端例子

    目标:  完成一个精简TCP服务器,可接收来自多个用户的请求,并返回结果. 思路:  (1)服务器      C++ TCP服务器的实现主要由以下几个函数来完成:        a)socket    ...

  6. ArrayList和LinkedList的底层代码实现思想

    ArrayList是Java众多集合类中的一个,实现List接口,List的父接口是Collection.ArrayList底层的数据结构是线性表中的顺序表,底层是一个长度可以动态增长的数组.数组有很 ...

  7. PTA(Basic Level)1031.查验身份证

    一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8, ...

  8. [转帖]linux文件描述符文件/etc/security/limits.conf

    linux文件描述符文件/etc/security/limits.conf https://blog.csdn.net/fanren224/article/details/79971359 需要多学习 ...

  9. NPM和webpack的关系(转载)

    NPM和webpack的关系(转载):https://blog.csdn.net/cwh0908/article/details/90769823 NPM和webpack的关系(转载) 入门前端的坑也 ...

  10. TableLayoutPanel

    1.简单属性 百度经验:https://jingyan.baidu.com/article/9113f81b7966df2b3314c775.html Name属性:tableLayoutPanel经 ...