链接1

链接2

题意简述

第一个题 : 问图中有多少不同的最小割数值

第二个题 : \(q\) 次询问图中多少对点对之间的最小割小于 \(x\) 。

Sol

两个都是模板题就放一起了。

求完最小割树直接暴力 \(O(n^2)\) 弄出所有点对间最小割 , 然后该干嘛干嘛。


最小割树的构建:

\(Gemory-Hu\; Tree\)算法

对于一个 \(n\) 个节点的图 , 图中所有点对不同的最小割数目最多只有 \(n-1\) 个 , 可以证明存在一棵树 , 使得两点在这棵树上的最小割即为原图中的最小割 。

考虑3个点两两之间的最小割 \(C_{u,v},C_{u,t},C_{v,t}\) , 我们已知 \(C_{u,t},C_{v,t}\) , 假设在\(C_{u,v}\)中 ,不妨假设 \(t\) 被分在了与 \(v\) 在一起的割集 。由于在一个割中一个点一定被分在源点或者汇点的一侧割集 , 那么可以推出 \(C_{u,v}\leq C_{u,t}\) , 如果不是那么显然直接割掉 \(u,t\) 就能达到割掉 \(u,v\) 的目的而使最小割变小。

类似的可以得出 \(C_{u,v}\geq C_{u,t}\) , 那么只能是 \(C_{u,v}=C_{u,t}\) 。

用归纳法可以得到一个 \(n\) 个点的图中最多只有 \(n-1\) 个不同的最小割。

如何构建最小割树?

采用递归的策略 , 对于当前点集 , 任意取两个点做最小割(注意这里是对原图跑最小割) , 然后给这两个点连边 , 权值为最小割大小。

然后就把参与网络中与源点可达的点与源点扔在一起 , 与其他的和汇点扔在一起。两边递归即可。

正确性就是证明只有 \(n-1\) 个不同的最小割中的道理相同 , 考虑某一个点被划分在哪个集合从而保证了正确性。

代码:

cpp1:

#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
#define Copy(a,b) memcpy(a,b,sizeof(a))
template<class T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;
}
const int M=3020;
const int N=200;
const int INF=2e9;
struct edge{
int to,next,cap,flow;
}a[M<<1];
int head[N],cnt=0;
int que[N],n,m;
inline void add(int x,int y,int z){a[cnt]=(edge){y,head[x],z,z};head[x]=cnt++;}
int d[N],S,T,cur[N];
bool bel[N];queue<int> Q;
inline bool bfs(){
while(!Q.empty())Q.pop();
Set(d,0);d[S]=1;Q.push(S);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int v,i=head[u];~i;i=a[i].next){
v=a[i].to;if(d[v]||!a[i].cap) continue;
d[v]=d[u]+1;if(v==T) return 1;
Q.push(v);
}
}
return d[T];
}
int dfs(int u,int flow){
if(u==T) return flow;
int rest=flow;
for(int v,&i=cur[u];~i;i=a[i].next){
v=a[i].to;if(!a[i].cap||d[v]!=d[u]+1) continue;
int f=dfs(v,min(a[i].cap,rest));
if(!f) d[v]=0;
rest-=f;a[i].cap-=f,a[i^1].cap+=f;
if(!rest) break;
}
return flow-rest;
}
inline int Dinic(){
int flow=0;
while(bfs()) Copy(cur,head),flow+=dfs(S,INF);
return flow;
}
inline void Return(){for(int i=0;i<cnt;++i) a[i].cap=a[i].flow;for(int i=1;i<=n;++i) bel[i]=0;}
void Dfs(int u){bel[u]=1;for(int v,i=head[u];~i;i=a[i].next){v=a[i].to;if(a[i].cap&&!bel[v]) Dfs(v);}}
namespace GHT{
struct edge{int to,next,w;}a[N<<1];
int head[N],cnt=0;
inline void add(int x,int y,int z){a[++cnt]=(edge){y,head[x],z};head[x]=cnt;}
int tmp[N];
inline void Clear(){Set(head,0);cnt=0;}
void Build(int l,int r){
if(l>=r) return;
S=que[l],T=que[r];Return();int Flow=Dinic();Dfs(S);
int L=l-1,R=r+1;add(S,T,Flow),add(T,S,Flow);
for(int i=l;i<=r;++i) {int u=que[i];if(bel[u]) tmp[++L]=u;else tmp[--R]=u;}
for(int i=l;i<=r;++i) que[i]=tmp[i];
Build(l,L),Build(R,r);
return;
}
int gezi[N*N];
inline void DFS(int u,int fa,int Mi){
if(Mi!=INF) gezi[++gezi[0]]=Mi;
for(int v,i=head[u];i;i=a[i].next){
v=a[i].to;if(v==fa) continue;
DFS(v,u,min(Mi,a[i].w));
}
}
inline void work(){
for(int i=1;i<=n;++i) que[i]=i;
Build(1,n);gezi[0]=0;
for(int i=1;i<=n;++i) DFS(i,0,INF);
sort(gezi+1,gezi+1+gezi[0]);
int q;init(q);
while(q--){
int x;init(x);printf("%d\n",(upper_bound(gezi+1,gezi+1+gezi[0],x)-gezi-1)/2);
}
puts("");
return;
}
}
int main()
{
int T;init(T);
while(T--){
Set(head,-1);cnt=0;GHT::Clear();
init(n),init(m);
int u,v,w;
for(int i=1;i<=m;++i) {
init(u),init(v),init(w);
add(u,v,w),add(v,u,w);
}
GHT::work();
}
return 0;
}

cpp2:

#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
#define Copy(a,b) memcpy(a,b,sizeof(a))
template<class T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;
}
const int M=8501;
const int N=1000;
const int INF=2e9;
struct edge{
int to,next,cap,flow;
}a[M<<1];
int head[N],cnt=0;
int que[N],n,m;
inline void add(int x,int y,int z){a[cnt]=(edge){y,head[x],z,z};head[x]=cnt++;}
int d[N],S,T,cur[N];
bool bel[N];queue<int> Q;
inline bool bfs(){
while(!Q.empty())Q.pop();
Set(d,0);d[S]=1;Q.push(S);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int v,i=head[u];~i;i=a[i].next){
v=a[i].to;if(d[v]||!a[i].cap) continue;
d[v]=d[u]+1;if(v==T) return 1;
Q.push(v);
}
}
return d[T];
}
int dfs(int u,int flow){
if(u==T) return flow;
int rest=flow;
for(int v,&i=cur[u];~i;i=a[i].next){
v=a[i].to;if(!a[i].cap||d[v]!=d[u]+1) continue;
int f=dfs(v,min(a[i].cap,rest));
if(!f) d[v]=0;
rest-=f;a[i].cap-=f,a[i^1].cap+=f;
if(!rest) break;
}
return flow-rest;
}
inline int Dinic(){
int flow=0;
while(bfs()) Copy(cur,head),flow+=dfs(S,INF);
return flow;
}
inline void Return(){for(int i=0;i<cnt;++i) a[i].cap=a[i].flow;for(int i=1;i<=n;++i) bel[i]=0;}
void Dfs(int u){bel[u]=1;for(int v,i=head[u];~i;i=a[i].next){v=a[i].to;if(a[i].cap&&!bel[v]) Dfs(v);}}
namespace GHT{
struct edge{int to,next,w;}a[N<<1];
int head[N],cnt=0;
inline void add(int x,int y,int z){a[++cnt]=(edge){y,head[x],z};head[x]=cnt;}
int tmp[N];
void Build(int l,int r){
if(l>=r) return;
S=que[l],T=que[r];Return();int Flow=Dinic();Dfs(S);
int L=l-1,R=r+1;add(S,T,Flow),add(T,S,Flow);
for(int i=l;i<=r;++i) {int u=que[i];if(bel[u]) tmp[++L]=u;else tmp[--R]=u;}
for(int i=l;i<=r;++i) que[i]=tmp[i];
Build(l,L),Build(R,r);
return;
}
map<int,int>vis;
int ans=0;
inline void DFS(int u,int fa,int Mi){
if(Mi!=INF) {if(!vis.count(Mi)) vis[Mi]=1,++ans;}
for(int v,i=head[u];i;i=a[i].next){
v=a[i].to;if(v==fa) continue;
DFS(v,u,min(Mi,a[i].w));
}
}
inline void work(){
for(int i=1;i<=n;++i) que[i]=i;
Build(1,n);
for(int i=1;i<=n;++i) DFS(i,0,INF);
cout<<ans<<endl;
return;
}
}
int main()
{
Set(head,-1);
init(n),init(m);
int u,v,w;
for(int i=1;i<=m;++i) {
init(u),init(v),init(w);
add(u,v,w),add(v,u,w);
}
GHT::work();
return 0;
}

【LuoguP3329&4123】[ZJOI2011]最小割&[CQOI2016]不同的最小割的更多相关文章

  1. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  2. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  3. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

  4. 4519: [Cqoi2016]不同的最小割

    4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 489 Solved: 301 [Submit][Stat ...

  5. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  6. bzoj4519: [Cqoi2016]不同的最小割(分治最小割)

    4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...

  7. BZOJ4519: [Cqoi2016]不同的最小割

    Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 ...

  8. 不同的最小割(cqoi2016,bzoj4519)(最小割树)

    学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点\(s,t\)不在同一个部分中,则称这个划分是关于\(s,t\)的割.对于带权图来说,将 所有顶 ...

  9. 【BZOJ-4519】不同的最小割 最小割树(分治+最小割)

    4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 393  Solved: 239[Submit][Stat ...

随机推荐

  1. 2018.03.27 python pandas merge join 使用

    #2.16 合并 merge-join import numpy as np import pandas as pd df1 = pd.DataFrame({'key1':['k0','k1','k2 ...

  2. 5.2.k8s.Secret

    #Secret Secret存储密码.token.密钥等敏感数据 Secret以Volume或环境变量方式使用 #Secret类型 Opaque : base64 编码格式的 Secret kuber ...

  3. jupyter 服务器安装随笔

    python3:python3 -m pip install --upgrade pip python3 -m pip install jupyterpkg install py36-pyzmq-18 ...

  4. Intellij IDEA 常见问题

    右击项目时,没有 Java Class,只能创建其他文件 IDEA 还没有将这个项目识别为 Maven 项目时,会出现这种情况.此时右键无法创建类. 解决办法: 手动为 IDEA 指定项目类型:如果编 ...

  5. 为终端配置proxy

    转自:https://my.oschina.net/u/818848/blog/677225?p=1 做开发的同学,应该都会经常接触终端,有些时候我们在终端会做一些网络操作,比如下载gradle包等, ...

  6. MSSQL注入--反弹注入

    明明是sql注入的点,却无法进行注入,注射工具拆解的速度异常的缓慢,错误提示信息关闭,无法返回注入的结果,这个时候你便可以尝试使用反弹注入, 反弹注入需要依赖于函数opendatasource的支持, ...

  7. 【Qt开发】foreach用法

    If you just want to iterate over all the items in a container in order, you can use Qt's foreach key ...

  8. linux上执行mysql的脚本文件

    我们测试过程中,经常需要执行升级脚本或导入生产测试数据,对于轻量的升级脚本可以直接在客户端工具中打开执行,但是对于文件内容比较大的.sql文件,比如几百M,几G的sql文件,直接拖到客户端工具打开执行 ...

  9. SVN与Git的优点差异比较

    今天自己还是很有进步的,但是 下午的进度很慢,学习还是得回去,不能在工位进行 在网上看到一篇有关于SVN与Git的区别 复制下来了,以后可以经常看看 一. 集中式vs分布式 1. Subversion ...

  10. .net 与directX

    微软早期出过managed assembly.但后来因为XXX的原因,没有继续出,只支持c++了..net的开发者就哭了.这篇博客解释了前世今生: https://blogs.msdn.microso ...