题目描述







题解

一种显然的水法:max(0,-(点权-边权之和*2))

这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值


考虑从子树往上推求出当前点的答案

设每棵子树从根往下走的所需体力值为f,走完的贡献为sum

由于要加上 当前点-->儿子 这条边,所以实际上走完的贡献sum'=sum-边权*2

所需的体力值f'=max(边权+f,2*边权-sum),这里其实有两种情况

①当前点-->儿子-->子树(-->儿子),那么最坏情况就是(子树的最坏情况+边权)

②当前点-->儿子-->子树-->儿子-->当前点,最终的贡献实际为sum-边权*2,那么就需要至少max(0,边权*2-sum)的体力


显然对于贡献≥0的点按照需求从小到大取

对于贡献<0的点,定义减少量=-贡献

那么按照需求-减少量从大到小排序即可

证明:

定义差值=需求-减少量

对于两个儿子,设第一个儿子的差值和减少量分别为a和b,第二个为cd

先假设已经按照差值排序,且排序后两个儿子相邻,那么有a≥c

证明交换后不会更优

设x为走这两棵子树前的体力,保证在中途不会出现负数且能达到需求量

那么有

交换前:

x≥a+b,x-b≥c+d

交换后:

x≥c+d,x-d≥a+b

根据式子

根节点贡献+恢复的体力-每棵子树的减少量之和=剩余体力,其中只有恢复的体力是变量,所以可以发现剩余体力越少=答案越小

由于交换前后剩余的体力都是x-b-d,所以要使x尽量小(太大可能会导致有剩余)

所以变成证明

max(a+b,b+c+d)≤max(c+d,a+b+d)

由于a+b+d≤max(c+d,a+b+d),且a+b+d≥a+b和b+c+d(a≥c),所以max(a+b,b+c+d)≤a+b+d≤max(c+d,a+b+d)

得证

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
using namespace std; struct type{
long long f,sum;
} b[100001],c[100001];
int a[200001][3];
int ls[100001];
int w[100001];
long long f[100001];
long long sum[100001];
int n,i,j,k,l,len;
long long ans; bool cmp(type a,type b)
{
return a.f<b.f;
}
bool Cmp(type a,type b)
{
return a.f-a.sum>b.f-b.sum;
} void New(int x,int y,int z)
{
++len;
a[len][0]=y;
a[len][1]=ls[x];
a[len][2]=z;
ls[x]=len;
} void dfs(int Fa,int t)
{
int i,l1=0,l2=0;
long long now=w[t]; sum[t]=w[t]; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
dfs(t,a[i][0]);
sum[t]+=sum[a[i][0]]-a[i][2]-a[i][2];
} if (!ls[t]) return; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
if (sum[a[i][0]]-a[i][2]-a[i][2]>=0)
{
++l1;
b[l1].f=max(f[a[i][0]]+a[i][2],-(sum[a[i][0]]-a[i][2]-a[i][2]));
b[l1].sum=sum[a[i][0]]-a[i][2]-a[i][2];
}
else
{
++l2;
c[l2].f=max(f[a[i][0]]+a[i][2],-(sum[a[i][0]]-a[i][2]-a[i][2]));
c[l2].sum=-(sum[a[i][0]]-a[i][2]-a[i][2]);
}
} if (l1)
{
sort(b+1,b+l1+1,cmp);
fo(i,1,l1)
{
if (now<b[i].f)
{
f[t]+=b[i].f-now;
now=b[i].f;
}
now+=b[i].sum;
}
}
if (l2)
{
sort(c+1,c+l2+1,Cmp);
if (now<(c[1].f-c[1].sum))
{
f[t]+=(c[1].f-c[1].sum)-now;
now=0;
}
else
now-=(c[1].f-c[1].sum); fo(i,1,l2)
{
if (i>1)
now+=(c[i-1].f-c[i-1].sum)-(c[i].f-c[i].sum); if (now<c[i].sum)
{
f[t]+=c[i].sum-now;
now=c[i].sum;
}
now-=c[i].sum;
}
}
} int main()
{
// freopen("a.in","r",stdin);
// freopen("b.out","w",stdout);
freopen("horse.in","r",stdin);
freopen("horse.out","w",stdout); scanf("%d",&n);
fo(i,1,n)
scanf("%d",&w[i]);
fo(i,2,n)
{
scanf("%d%d%d",&j,&k,&l); New(j,k,l);
New(k,j,l);
} dfs(0,1); printf("%lld\n",f[1]); fclose(stdin);
fclose(stdout); return 0;
}

6364. 【NOIP2019模拟2019.9.20】养马的更多相关文章

  1. NOIP2019模拟2019.9.20】膜拜大会(外向树容斥,分类讨论)

    传送门. 题解: 我果然是不擅长分类讨论,心态被搞崩了. 注意到\(m<=n-2\),意味着除了1以外的位置不可能被加到a[1]两遍. 先考虑个大概: 考虑若存在\(x,x-1,-,2\)(有序 ...

  2. 6359. 【NOIP2019模拟2019.9.15】小ω的树(tree)(定期重构)

    题目描述 题解 qy的毒瘤题 CSP搞这种码农题当场手撕出题人 先按照边权从大到小建重构树,然后40%暴力修改+查找即可 100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每 ...

  3. [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】

    Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...

  4. 6424. 【NOIP2019模拟2019.11.13】我的订书机之恋

    题目描述 Description Input Output Sample Input 见下载 Sample Output 见下载 Data Constraint 题解 lj题卡线段树 求出每个右端点往 ...

  5. 6392. 【NOIP2019模拟2019.10.26】僵尸

    题目描述 题解 吼题但题解怎么这么迷 考虑一种和题解不同的做法(理解) 先把僵尸离散化,h相同的钦(ying)点一个大小 (可以发现这样每种情况只会被算正好一次) 计算完全被占领的方案,然后1-方案/ ...

  6. 6389. 【NOIP2019模拟2019.10.26】小w学图论

    题目描述 题解 之前做过一次 假设图建好了,设g[i]表示i->j(i<j)的个数 那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同 从n~1染色,点i的方案 ...

  7. 6377. 【NOIP2019模拟2019.10.05】幽曲[埋骨于弘川]

    题目描述 题解 随便bb 详细题解见 https://www.cnblogs.com/coldchair/p/11624979.html https://blog.csdn.net/alan_cty/ ...

  8. 6362. 【NOIP2019模拟2019.9.18】数星星

    题目描述 题解 一种好想/好写/跑得比**记者还快的做法: 对所有询问排序,按照R递增的顺序来处理 维护每个点最后一次被覆盖的时间,显然当前右端点为R时的答案为所有时间≥L的点的权值之和 LCT随便覆 ...

  9. 【NOIP2019模拟2019.11.13】旅行 && GDKOI2018 还念(二分答案+dij)

    Description: 题解: 显然满足二分性. 并且每一条边要不选l要不选r. 二分的那条链肯定要选l. 考虑有两个人在走最短路,一个人一开始必须走二分的那条链,要求第一个人走的比第二个人快. 安 ...

随机推荐

  1. C 语言结构体 struct 及内存对齐

    struct 结构体 对于复杂的数据类型(例如学生.汽车等),C 语言允许我们将多种数据封装到一起,构成新类型. 跟面向对象语言中的对象相比,结构体只能包含成员变量,不支持操作. #include & ...

  2. 模态框——angular

    ui-bootstrap-tpls.js库 $uibModal服务 $uibModalInstance服务 一.在angular中应用modal $uibModal 使用方法:直接注入到控制器中. . ...

  3. docker--docker compose 编排工具

    11 docker compose 编排工具 11.1 docker compose 介绍 根据前面所学的知识可知,想要使用Docker部署应用,就要先在应用中编写Dockerfile 文件来构建镜像 ...

  4. ubuntu server安装的一些坑

    [没有root用户] ubuntu server安装的时候要你新建一个用户,安装完成后,你需要手动开启root. $ sudo passwd root 输入你当前用户的密码 输入你希望的root用户的 ...

  5. Java——ArrayList底层源码分析

    1.简介 ArrayList 是最常用的 List 实现类,内部是通过数组实现的,它允许对元素进行快速随机访问.数组的缺点是每个元素之间不能有间隔, 当数组大小不满足时需要增加存储能力,就要将已经有数 ...

  6. Windows node.js安装运行npm显示类似"ENOENT, stat 'C:\Users\XXXX\AppData\Roaming\npm'错误

    这个错误是在玩一个小的博客的时候,使用到node.js,正好使用的是windows系统就安装了一个windows32的node.js版本 结果一运行npm就出现如上的错误,后来发现,只要在上面提到的目 ...

  7. [2019徐州网络赛J题]Random Access Iterator

    题目链接 大致题意:从根节点出发,在节点x有son[x]次等概率进入儿子节点,求到达最深深度的概率.son[x]为x节点的儿子节点个数. 又又又又没做出来,心态崩了. 下来看了官方题解后发觉自己大体思 ...

  8. C++中的新型类型转换

    1,C 语言中已经有类型之间的强制转换,C++ 做了改善: 2,C 方式的强制类型转换: 1,(Type) (Expression): 2,Type (Expression): 1,这种方式和上述方式 ...

  9. 类———用类定义对象———error:C++表达式必须包含类类型

    //原文参考https://blog.csdn.net/lanchunhui/article/details/52503332 你以为你定义了一个类的对象,其实在编译器看来你是声明了一个函数 clas ...

  10. 最少多少人说谎(dp)

    https://ac.nowcoder.com/acm/contest/1168/H 题意:n个学生,邓志聪想知道这些学生的考试情况,于是一个一个叫这些学生叫去办公室问他们,但是有些学生并没有讲真话, ...