TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7019 | Accepted: 2387 |
Description
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.
Input
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].
Output
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
Sample Output
53246 题意:题意:给出n个牛棚、两个特殊点S1,S2的坐标。S1、S2直连。牛棚只能连S1或S2还有,某些牛棚只能连在同一个S,某些牛棚不能连在同一个S
求使最长的牛棚间距离最小 距离是曼哈顿距离
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=100+1000; struct Point{
int x,y;
void read()
{
scanf("%d %d",&x,&y);
}
}p[510];
vector<int> g[2*maxn],G[2*maxn];
stack<int> S;
Point s1,s2;
int n,a,b,u,v,scc_cnt,dfs_clock,pre[2*maxn],sccno[2*maxn],lowlink[2*maxn]; int dis(Point a,Point b)
{
return abs(a.x-b.x)+abs(a.y-b.y);
} void add_edgeG(int u,int v)
{
G[u].push_back(v);
} void add_edge(int u,int v)
{
g[u].push_back(v);
} void build(int mid)
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
int u=i<<1,v=j<<1;
if(dis(p[i],s1)+dis(s1,p[j])>mid)
{
add_edge(u,v^1);
add_edge(v,u^1);
}
if(dis(p[i],s2)+dis(s2,p[j])>mid)
{
add_edge(u^1,v);
add_edge(v^1,u);
}
if(dis(p[i],s1)+dis(s1,s2)+dis(s2,p[j])>mid)
{
add_edge(u,v);
add_edge(v^1,u^1);
}
if(dis(p[i],s2)+dis(s2,s1)+dis(s1,p[j])>mid)
{
add_edge(u^1,v^1);
add_edge(v,u);
}
}
} void tarjan(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u]=min(lowlink[v],lowlink[u]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
} if(pre[u]==lowlink[u])
{
scc_cnt++;
for(;;)
{
int w=S.top();S.pop();
sccno[w]=scc_cnt;
if(w==u) break;
}
}
} bool find_scc(int mid)
{
for(int i=2;i<=2*n+1;i++) g[i].clear();
for(int u=2;u<=2*n+1;u++)
for(int i=0;i<G[u].size();i++)
g[u].push_back(G[u][i]);
build(mid); MM(lowlink,0);
MM(sccno,0);
MM(pre,0);
scc_cnt=dfs_clock=0;
for(int i=2;i<=2*n+1;i++)
if(!pre[i])
tarjan(i); for(int i=2;i<=2*n;i+=2)
{
if(sccno[i]==sccno[i^1])
return false;
}
return true;
} int main()
{
while(~scanf("%d %d %d",&n,&a,&b))
{
for(int i=2;i<=2*n+1;i++) G[i].clear();
s1.read();
s2.read();
for(int i=1;i<=n;i++) p[i].read(); for(int i=0;i<a;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v^1);
add_edgeG(v,u^1);
add_edgeG(u^1,v);
add_edgeG(v^1,u);
} for(int i=0;i<b;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v);
add_edgeG(v,u);
add_edgeG(u^1,v^1);
add_edgeG(v^1,u^1);
} int l=-1,r=5*1e6+100;
while(r-l>1)
{
int mid=(l+r)>>1;
if(find_scc(mid))
r=mid;
else l=mid;
}
if(r>5*1e6) printf("-1\n");
else printf("%d\n",r);
}
return 0;
}
分析:与模板题最大的不同就是要求在满足有连接方案存在的情况下,图中存在的最长简单路径尽可能短,处理方式如下:
1.因为是最长路径尽可能短,所以二分最大路径。
2.二分出一个mid值后,将每两个节点之间的四种组合的路径长度与mid比较,从而根据要让所有路径长度
都不能超过mid这一假设条件进行再次连边;
3.因为要多次连边,所以需要设置两个邻接表,一个记录根据喜欢与讨厌的关系保存边,另一个在前一个的基础上加上路径限制
TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形的更多相关文章
- POJ 2594 Treasure Exploration(最小路径覆盖变形)
POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- POJ 3126 Prime Path(素数路径)
POJ 3126 Prime Path(素数路径) Time Limit: 1000MS Memory Limit: 65536K Description - 题目描述 The minister ...
- Java实现 POJ 2749 分解因数(计蒜客)
POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...
- poj 2749
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6091 Accepted: 2046 De ...
- poj 3020 Antenna Placement(最小路径覆盖 + 构图)
http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- poj 2060 Taxi Cab Scheme (最小路径覆盖)
http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS Memory Limit: 30000K Total Submi ...
- POJ 3216 Repairing Company(最小路径覆盖)
POJ 3216 Repairing Company id=3216">题目链接 题意:有m项任务,每项任务的起始时间,持续时间,和它所在的block已知,且往返每对相邻block之间 ...
- poj 3414 Pots 【BFS+记录路径 】
//yy:昨天看着这题突然有点懵,不知道怎么记录路径,然后交给房教了,,,然后默默去写另一个bfs,想清楚思路后花了半小时写了120+行的代码然后出现奇葩的CE,看完FAQ改了之后又WA了.然后第一次 ...
随机推荐
- python简单验证码识别
在学习python通过接口自动登录网站时,用户名密码.cookies.headers都好解决但是在碰到验证码这个时就有点棘手了:于是通过网上看贴,看官网完成了对简单验证码的识别,如果是复杂的请看大神的 ...
- SYN攻击源码
一.linux下源代码实现/* syn flood by wqfhenanxc. * random soruce ip and random sourec port. * use #include & ...
- # 匈牙利算法(二分图最大匹配)- hdu 过山车
匈牙利算法(二分图最大匹配)- hdu 过山车 Hdu 2063 二分图:图中的点可以分成两组U,V,所有边都是连接U,V中的顶点.等价定义是:含奇数条边的图. 匹配:一个匹配是一个边的集合,其中任意 ...
- leecode刷题(24)-- 翻转二叉树
leecode刷题(24)-- 翻转二叉树 翻转二叉树 翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 ...
- cut--修剪小能手
cut命令 cut原理:以每一行位一个处理对象. 参数选项 解释说明 -b 以字节为单位进行分割 -c 以字符为单位进行分割(对切割中文有奇效) -d 自定义分隔符号,默认以tab为分隔符 1:-b ...
- Storm的基本概念
Storm的基本概念 Topology:拓扑,也俗称一个任务,类似于MapReduce中的job.将Spout.Bolt整合起来的拓扑图.定义了Spout和Bolt的结合关系.并发数量.配置等等. S ...
- C#中static修饰符的作用
static在C#中表示的是静态的,比如一个静态的字段是归类型所有,而非归对象所有,也就是说,在调用这个字段时,只能用类型去调,而不能用对象. 实例字段时随着对象创建而创建,对象销毁而销毁,而静态字段 ...
- Chrome开发者工具详解(一)之使用断点来调试代码上
1.断点调试是啥?难不难? 断点调试其实并不是多么复杂的一件事,简单的理解无外呼就是打开浏览器,打开sources找到js文件,在行号上点一下罢了.操作起来似乎很简单,其实很多人纠结的是,是在哪里打断 ...
- Clang教程之实现源源变化
clang教程之实现源源变化 声明:本教程来自于Eli Bendersky's website 原文地址:http://eli.thegreenplace.net/2014/05/01/modern- ...
- Support for the experimental syntax 'classProperties' isn't currently enabled
项目中使用高级语法报错, 报错信息 SyntaxError: E:\workdata\webpackVue\src\index.js: Support for the experimental syn ...