Building roads
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7019   Accepted: 2387

Description

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246

题意:题意:给出n个牛棚、两个特殊点S1,S2的坐标。S1、S2直连。牛棚只能连S1或S2
           还有,某些牛棚只能连在同一个S,某些牛棚不能连在同一个S
           求使最长的牛棚间距离最小  距离是曼哈顿距离
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=100+1000; struct Point{
int x,y;
void read()
{
scanf("%d %d",&x,&y);
}
}p[510];
vector<int> g[2*maxn],G[2*maxn];
stack<int> S;
Point s1,s2;
int n,a,b,u,v,scc_cnt,dfs_clock,pre[2*maxn],sccno[2*maxn],lowlink[2*maxn]; int dis(Point a,Point b)
{
return abs(a.x-b.x)+abs(a.y-b.y);
} void add_edgeG(int u,int v)
{
G[u].push_back(v);
} void add_edge(int u,int v)
{
g[u].push_back(v);
} void build(int mid)
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
int u=i<<1,v=j<<1;
if(dis(p[i],s1)+dis(s1,p[j])>mid)
{
add_edge(u,v^1);
add_edge(v,u^1);
}
if(dis(p[i],s2)+dis(s2,p[j])>mid)
{
add_edge(u^1,v);
add_edge(v^1,u);
}
if(dis(p[i],s1)+dis(s1,s2)+dis(s2,p[j])>mid)
{
add_edge(u,v);
add_edge(v^1,u^1);
}
if(dis(p[i],s2)+dis(s2,s1)+dis(s1,p[j])>mid)
{
add_edge(u^1,v^1);
add_edge(v,u);
}
}
} void tarjan(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u]=min(lowlink[v],lowlink[u]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
} if(pre[u]==lowlink[u])
{
scc_cnt++;
for(;;)
{
int w=S.top();S.pop();
sccno[w]=scc_cnt;
if(w==u) break;
}
}
} bool find_scc(int mid)
{
for(int i=2;i<=2*n+1;i++) g[i].clear();
for(int u=2;u<=2*n+1;u++)
for(int i=0;i<G[u].size();i++)
g[u].push_back(G[u][i]);
build(mid); MM(lowlink,0);
MM(sccno,0);
MM(pre,0);
scc_cnt=dfs_clock=0;
for(int i=2;i<=2*n+1;i++)
if(!pre[i])
tarjan(i); for(int i=2;i<=2*n;i+=2)
{
if(sccno[i]==sccno[i^1])
return false;
}
return true;
} int main()
{
while(~scanf("%d %d %d",&n,&a,&b))
{
for(int i=2;i<=2*n+1;i++) G[i].clear();
s1.read();
s2.read();
for(int i=1;i<=n;i++) p[i].read(); for(int i=0;i<a;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v^1);
add_edgeG(v,u^1);
add_edgeG(u^1,v);
add_edgeG(v^1,u);
} for(int i=0;i<b;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v);
add_edgeG(v,u);
add_edgeG(u^1,v^1);
add_edgeG(v^1,u^1);
} int l=-1,r=5*1e6+100;
while(r-l>1)
{
int mid=(l+r)>>1;
if(find_scc(mid))
r=mid;
else l=mid;
}
if(r>5*1e6) printf("-1\n");
else printf("%d\n",r);
}
return 0;
}

  分析:与模板题最大的不同就是要求在满足有连接方案存在的情况下,图中存在的最长简单路径尽可能短,处理方式如下:

1.因为是最长路径尽可能短,所以二分最大路径。

2.二分出一个mid值后,将每两个节点之间的四种组合的路径长度与mid比较,从而根据要让所有路径长度

都不能超过mid这一假设条件进行再次连边;

3.因为要多次连边,所以需要设置两个邻接表,一个记录根据喜欢与讨厌的关系保存边,另一个在前一个的基础上加上路径限制

TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形的更多相关文章

  1. POJ 2594 Treasure Exploration(最小路径覆盖变形)

    POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...

  2. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  3. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  4. Java实现 POJ 2749 分解因数(计蒜客)

    POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...

  5. poj 2749

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6091   Accepted: 2046 De ...

  6. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  7. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  8. POJ 3216 Repairing Company(最小路径覆盖)

    POJ 3216 Repairing Company id=3216">题目链接 题意:有m项任务,每项任务的起始时间,持续时间,和它所在的block已知,且往返每对相邻block之间 ...

  9. poj 3414 Pots 【BFS+记录路径 】

    //yy:昨天看着这题突然有点懵,不知道怎么记录路径,然后交给房教了,,,然后默默去写另一个bfs,想清楚思路后花了半小时写了120+行的代码然后出现奇葩的CE,看完FAQ改了之后又WA了.然后第一次 ...

随机推荐

  1. Ubuntu19.04系统SSH连接CentOS7虚拟机

    一.为CentOS7配置静态IP 注意查看宿主机(Ubuntu19.04)所在局域网段,当前为172.18.25.108 修改当前系统下virtual box的网络设置 [控制]-->[设置]- ...

  2. Java 中的动态代理

    一.概述 1. 什么是代理 我们大家都知道微商代理,简单地说就是代替厂家卖商品,厂家“委托”代理为其销售商品.关于微商代理,首先我们从他们那里买东西时通常不知道背后的厂家究竟是谁,也就是说,“委托者” ...

  3. Luogu P3511 [POI2010]MOS-Bridges

    题目 二分答案然后混合图欧拉回路,因为没有SPJ所以就没写了,怕写了有锅.

  4. git clone 含有子模块的项目

    当一个 git 项目包含子模块(submodule) 时,直接克隆下来的子模块目录里面是空的. 有两种方法解决: 方法一 如果项目已经克隆到了本地,执行下面的步骤: 初始化本地子模块配置文件 git ...

  5. java-阿里云发送短信

    <!--aliyun短信sdk--> <dependency> <groupId>com.aliyun</groupId> <artifactId ...

  6. Django之自定义标签,过滤器,以及inclusion_tag

    目录 Django之自定义标签,过滤器,以及inclusion_tag 自定义过滤器 自定义标签 inclusion_tag inclusion_tag() 项目实例: inclusion_tag() ...

  7. 树莓派USB存储设备自动挂载并通过脚本实现自动拷贝,自动播放视频,脚本自动升级等功能

    需求:首先需要树莓派自动挂载USB设备,然后扫描USB指定目录下文件,将相关文件拷贝至树莓派指定目录,然后通过omxplayer循环播放新拷贝文件视频 1. 树莓派实现USB存储设备自动挂载 树莓派U ...

  8. java之设计模式汇总

    1.单例模式 就是一个类只产生一个对象 对应数据库连接 定时执行者服务(ScheduledExecutorService) 在整个项目中应该只有一个对象 2.工厂模式 定义一个用于创建对象的接口 让子 ...

  9. k8s弹性伸缩概念以及测试用例

    k8s弹性伸缩概念以及测试用例 本文原文出处:https://juejin.im/post/5c82367ff265da2d85330d4f 弹性伸缩式k8s中的一大亮点功能,当负载大的时候,你可以对 ...

  10. Android系统分析之Audio音频流, 音频策略, 输出设备之间的关系

    音频流, 音频策略, 输出设备之间的关系 只针对 AudioManager.STREAM_VOICE_CALL 音频流类型进行分析 涉及到的类: hardware/libhardware_legacy ...