(本文内容和图片来自林轩田老师《机器学习技法》)

1. 核技巧引入

  如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SVM。即:

在这里我们计算这个向量内积有两种方法:一种是对Φ(x)给出明确的定义,分别算出两个高维向量,再做内积;另一种就是利用核函数,直接算出高维的内积。我们以一个例子来看这两种方法,定义一个二次转化:

我们可以直接计算出内积:

可以看出,最后的结果能够用x和x一撇表示出来,这就是一个核函数:

在这里,我们是给出了一个Φ(x)来推出它的核函数。但事实上,我们可以直接给一个核函数(只要我们能证明它是一个核函数),而不用知道它对应的Φ(x)是什么。这样做的一个好处就是我们不用求出高维向量在做内积,可以通过形式简单的核函数直接计算内积,计算复杂度降低了,到后面我们用核函数甚至可以引入无限维的转换。

我们的b值就是:

最终得到的分离超平面就是:

可以看出,不管是求解的优化问题还是最后的模型,我们都可以用核函数来表示。(这里我们不用知道w是什么)

因此,通过核函数的引入,我们相当于隐式的在高维空间进行线性SVM,而不用知道低维到高维的具体映射是什么。

关于使用核函数后的时间复杂度的优化,如下:

2 .多项式核函数

首先对一个常用的核函数——二次多项式核函数做导出:

对于不同的二次核,我们产生的决策边界是不同的:

之后我们可以推广出通用的多项式核函数:

3. 高斯核函数

我们可以证明高斯核函数是一个核函数,并且它对应一个到无限维的映射:

更通用的高斯核函数为:

高斯核SVM的分离超平面就是:

可以看出,模型是一堆中心在支撑向量上的高斯函数的线性组合,因此高斯核SVM也被称为RBF。

总结一下,SVM可以做的事情:

首先是有分离超平面,然后引入了的高维度转换(使得我们可以做非线性分类),然后使用了核技巧(使得我们降低了复杂度并且可以引入无限维的转换),在这些基础上,SVM有它的large-margin机制来确保我们的模型复杂度比较小(泛化能力)。

最后存储模型的时候,我们不用存储高维度的w,存储的是支持向量以及它们对应的阿尔法值。

接下来我们看看不同的高斯核svm产生的边界:

因此,即使SVM有large-margin的保护,但是还是要慎选伽马的值,否则仍然会过拟合。

4.几种核函数的比较

核型SVM的更多相关文章

  1. 《机器学习技法》---核型SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SV ...

  2. Coursera台大机器学习技法课程笔记01-linear hard SVM

    极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...

  3. 《机器学习技法》---线性SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 ...

  4. 机器学习技法笔记(2)-Linear SVM

    从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...

  5. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  6. 机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation

    本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voti ...

  7. 机器学习——支持向量机(SVM)

    机器学习--支持向量机(SVM) 支持向量机(Support Vector Machine)广泛地应用于分类问题,回归问题和异常检测问题.支持向量机一个很好的性质是其与凸优化问题相对应,局部最优解就是 ...

  8. 遵循统一的机器学习框架理解SVM

    遵循统一的机器学习框架理解SVM 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了李宏毅教授讲解SVM的课程和李航大大的统计学习方法. 二. ...

  9. Python机器学习笔记:SVM(1)——SVM概述

    前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思 ...

随机推荐

  1. java多线程系类:JUC线程池:01之线程池架构

    概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容--线程池.内容包括:线程池架构 ...

  2. codevs 1015 计算器的改良 2000年NOIP全国联赛普及组

     时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委 ...

  3. TEXTAREA自适应文字行数的多少

    <textarea rows=1 name=s1 cols=27 onpropertychange="this.style.posHeight=this.scrollHeight&qu ...

  4. 在intellj idea下用sbt的坑

    version : SBT 0.13.7 intellij 14 新建SBT项目以后无法编译,总是显示 Can not resolve symble stackoverflow 给出了暂时的解决办法. ...

  5. Redis学习笔记~conf自主集群模式

    回到目录 Redis自主提供了集群模式,当然也只是比较简单的读写分离模式,或者叫主从模式,它在各个redis服务端自己做数据同步机制,当然就是将主服务端的信息同步到各个slave服务器上,在客户端集成 ...

  6. 【三石jQuery视频教程】02.创建 FontAwesome 复选框和单选框

    视频地址:http://v.qq.com/page/m/8/c/m0150izlt8c.html 大家好,欢迎来到[三石jQuery视频教程],我是您的老朋友 - 三生石上. 今天,我们要通过基本的H ...

  7. 微信跳转浏览器来下载不同系统的app

    在微信里面,是不能通过应用宝以外的方式去直接下载app的,但是却可以通过跳转到浏览器去下载app,因此如果刚好各位公司有刚刚上线的app,来不及放到微信应用宝那里,可以试试这种办法. 实现思路: 1. ...

  8. 开始学emacs-1

    读readme http://ftp.gnu.org/gnu/emacs/windows/README

  9. 走进AngularJs(二) ng模板中常用指令的使用方式

    通过使用模板,我们可以把model和controller中的数据组装起来呈现给浏览器,还可以通过数据绑定,实时更新视图,让我们的页面变成动态的.ng的模板真是让我爱不释手.学习ng道路还很漫长,从模板 ...

  10. jQuery控制表头

    <!doctype html><html lang="en"><head> <meta charset="UTF-8" ...