核型SVM
(本文内容和图片来自林轩田老师《机器学习技法》)
1. 核技巧引入
如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SVM。即:

在这里我们计算这个向量内积有两种方法:一种是对Φ(x)给出明确的定义,分别算出两个高维向量,再做内积;另一种就是利用核函数,直接算出高维的内积。我们以一个例子来看这两种方法,定义一个二次转化:

我们可以直接计算出内积:

可以看出,最后的结果能够用x和x一撇表示出来,这就是一个核函数:

在这里,我们是给出了一个Φ(x)来推出它的核函数。但事实上,我们可以直接给一个核函数(只要我们能证明它是一个核函数),而不用知道它对应的Φ(x)是什么。这样做的一个好处就是我们不用求出高维向量在做内积,可以通过形式简单的核函数直接计算内积,计算复杂度降低了,到后面我们用核函数甚至可以引入无限维的转换。
我们的b值就是:

最终得到的分离超平面就是:

可以看出,不管是求解的优化问题还是最后的模型,我们都可以用核函数来表示。(这里我们不用知道w是什么)
因此,通过核函数的引入,我们相当于隐式的在高维空间进行线性SVM,而不用知道低维到高维的具体映射是什么。
关于使用核函数后的时间复杂度的优化,如下:

2 .多项式核函数
首先对一个常用的核函数——二次多项式核函数做导出:

对于不同的二次核,我们产生的决策边界是不同的:

之后我们可以推广出通用的多项式核函数:

3. 高斯核函数
我们可以证明高斯核函数是一个核函数,并且它对应一个到无限维的映射:

更通用的高斯核函数为:

高斯核SVM的分离超平面就是:

可以看出,模型是一堆中心在支撑向量上的高斯函数的线性组合,因此高斯核SVM也被称为RBF。
总结一下,SVM可以做的事情:

首先是有分离超平面,然后引入了的高维度转换(使得我们可以做非线性分类),然后使用了核技巧(使得我们降低了复杂度并且可以引入无限维的转换),在这些基础上,SVM有它的large-margin机制来确保我们的模型复杂度比较小(泛化能力)。
最后存储模型的时候,我们不用存储高维度的w,存储的是支持向量以及它们对应的阿尔法值。
接下来我们看看不同的高斯核svm产生的边界:

因此,即使SVM有large-margin的保护,但是还是要慎选伽马的值,否则仍然会过拟合。
4.几种核函数的比较


核型SVM的更多相关文章
- 《机器学习技法》---核型SVM
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SV ...
- Coursera台大机器学习技法课程笔记01-linear hard SVM
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...
- 《机器学习技法》---线性SVM
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 ...
- 机器学习技法笔记(2)-Linear SVM
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...
- 机器学习技法课之Aggregation模型
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...
- 机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation
本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voti ...
- 机器学习——支持向量机(SVM)
机器学习--支持向量机(SVM) 支持向量机(Support Vector Machine)广泛地应用于分类问题,回归问题和异常检测问题.支持向量机一个很好的性质是其与凸优化问题相对应,局部最优解就是 ...
- 遵循统一的机器学习框架理解SVM
遵循统一的机器学习框架理解SVM 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了李宏毅教授讲解SVM的课程和李航大大的统计学习方法. 二. ...
- Python机器学习笔记:SVM(1)——SVM概述
前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思 ...
随机推荐
- android第一行代码-2.activity基本用法
摘要: 本节主要涉及到的有activity的创建,标题栏隐藏,button绑定方法(toast的使用),menu使用,活动销毁 1.activity的创建跟注册 创建: public class Te ...
- JSP之WEB服务器:Apache与Tomcat的区别 ,几种常见的web/应用服务器
注意:此为2009年的blog,注意时效性(针对常见服务器) APACHE是一个web服务器环境程序 启用他可以作为web服务器使用 不过只支持静态网页 如(asp,php,cgi,jsp)等 ...
- 14-前端开发之CSS
什么是 CSS ? CSS 指层叠样式表 (Cascading Style Sheets),用于对页面进行美化. 存在的方式有3种: 元素内联:在标签中使用 style='xx:xxx;' 页面嵌入: ...
- jQuery load()方法用法集锦!
调用load方法的完整格式是:DE>load( url, [data], [callback] ),其中DE> DE>urlDE>:是指要导入文件的地址. DE>data ...
- 树莓派Odroid等卡片式电脑上搭建NAS教程系列6-miniDLNA
目录: 1. 树莓派Odroid等卡片式电脑上搭建NAS教程系列1-Ubuntu系统安装 2. 树莓派Odroid等卡片式电脑上搭建NAS教程系列2-SSH连接访问 3. 树莓派Odroid等卡片式电 ...
- linq distinct 不够用了!
问题引出:在实际中遇到一个问题,要进行集合去重,集合内存储的是引用类型,需要根据id进行去重.这个时候linq 的distinct 就不够用了,对于引用类型,它直接比较地址.测试数据如下: class ...
- MVC之前的那点事儿系列(8):UrlRouting的理解
文章内容 根据对Http Runtime和Http Pipeline的分析,我们知道一个ASP.NET应用程序可以有多个HttpModuel,但是只能有一个HttpHandler,并且通过这个Http ...
- C语言与内存模型初探
#include<stdio.h> #include<string.h> int main(){ long long int a = 2<<30; char str ...
- mac下 tomcat8+jdk1.8+servlet+Spring环境搭建中的问题
1,jdk1.8里面自带了servlet-api.jar tomcat里面也有这个,会导致冲突发生.出现这个问题会在控制台输出一大堆警告和错误,我一个一个去查(有的错误是表象不是核心)最后在stack ...
- Java语法
java语法: 一个java程序可以说是一系列对象的集合,而这些对象都要通过调用彼此的方法来协同工作. 对象: 对象是一个实例,例如:一只猫,它是一个对象,有状态和行为.它的状态状态有:颜色,名字,品 ...
