题意:

 

为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想要重新建造一条生产线。

        生产线是全自动化的,所以需要机器来组成生产线,给定有多少中种机器,标准ACM用电脑有多少部份,每种机器将什么样的ACM电脑半成品处理成什么样的电脑半成品(对于输入的电脑半成品,每部分有0,1,2三种状态:代表着 0、这部分必须没有我才能处理,1、这部分必须有我才能处理,2、这部分有没有我都能处理。对于输出的电脑半成品有0,1两种状态:代表着0,处理完后的电脑半成品里没有这部分,1、处理完的电脑半成品有这部分),每一个机器每小时可以处理Q个半成品(输入数据中的Qi)。

        求组装好的成产线的最大工作效率(每小时最多生成多少成品,成品的定义就是所有部分的状态都是“1”)

 
第一行输入两个数:一个P代表有P个零件, 一个 N代表有N台机器。
接下来N行,每行第一个数字有Qi,代表 第i个零件每小时能加工的半成品零件个数。然后是2*P个数字,前P个数字是加工前半成品需要满足的条件,后P个数表示加工后的半成品的数量。
===========================================================================
思路: 
首先要把点分割开,把点分开成两部分的意义在于,不能让最大流量超过本身的生产量。
 
==============================================================================================================

由第一副图可知,假如我们不拆分点,那么到达F的流量就是30, 主要原因是流经C点的时候,我们的总流量是超过C可以处理的最大流量的,但是每一个自流量是小于C能处理的最大流量的,但是我们又无法加以限制。因此会出现这样的问题。第二幅图我们就将拆点了,将C到C' 之间的流量加以限制。这样就不会超过最大流量。
==============================================================================================
最后我们这道题目处理出来的模型是这样的(和二分匹配可):
============================================================================================================
最后一个点就是如何输出路径。
路径的输出是要保存两个图,保存原图,和做完Dinic之后的残余网路图。
然后用原图减去残余网路图如果边权值大于0,说明这个边上曾经有过流量。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long LL;
const int INF = 1e9+;
const int maxn = ;
const int MOD = 1e9+; int G[maxn][maxn], Layer[maxn], G2[maxn][maxn];
struct node
{
int in[], out[];///第i台机器的输入输出规格
int flow;///第i台机器能放出的最大流量
} P[maxn];
int n, m;///n台机器,每台机器需要m个零件 bool OK(int a,int b)
{
for(int i=; i<=m; i++)
{
if( !(P[a].out[i] == P[b].in[i] || P[b].in[i] == ) )
return false;
}
return true;
} bool BFS(int Star,int End)
{
memset(Layer, , sizeof(Layer));
Layer[Star] = ;
queue<int> Q;
Q.push(Star); while( Q.size() )
{
int s = Q.front();
Q.pop(); if(s == End) return true; for(int i=; i<= End; i++)
{
if(G[s][i] && !Layer[i])
{
Layer[i] = Layer[s] + ;
Q.push(i);
}
}
}
return false;
}
int DFS(int s,int End, int MaxFlow)
{
if(s == End) return MaxFlow; int sFlow = ;///从s出发到达汇点的最大流量 for(int i=; i<=End; i++)
{
int flow = G[s][i]; if( G[s][i]== || Layer[s]+ != Layer[i] ) continue; flow = min(MaxFlow-sFlow, flow);
flow = DFS(i, End, flow);
G[s][i] -= flow;
G[i][s] += flow;
sFlow += flow;
if(sFlow == MaxFlow)
break ;
}
if(sFlow == )
Layer[s] = ;
return sFlow;
} int Dinic(int Star,int End)
{
int ans = ;
while( BFS(Star, End) )
{
ans += DFS(Star, End, INF);
}
return ans;
} int main()
{ while(scanf("%d %d", &m, &n) != EOF)
{
memset(G, , sizeof(G));
memset(P, , sizeof(P));
for(int i=; i<=n; i++)
{
scanf("%d", &P[i].flow);
for(int j=; j<=m; j++)
scanf("%d", &P[i].in[j]); for(int j=; j<=m; j++)
scanf("%d", &P[i].out[j]);
}
for(int i=; i<=m; i++)
{
P[].in[i] = P[].out[i] = ;
P[n+].in[i] = P[n+].out[i] = ;
}
P[].flow = P[n+].flow = INF;
n ++; for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
if(i == j)
G[j+n][i] = P[i].flow;
else if( OK(i, j) )
G[i][j+n] = P[i].flow;
}
memcpy(G2, G, sizeof(G));
int MaxFlow = Dinic(, n*);
int num = , a[maxn], b[maxn], c[maxn]; for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
if(i == j)continue; if(G2[i][j+n] > G[i][j+n])
{
a[num] = i, b[num] = j;
c[num++] = G2[i][j+n] - G[i][j+n];
}
} printf("%d %d\n", MaxFlow, num); for(int i=; i<num; i++)
printf("%d %d %d\n", a[i], b[i], c[i]); }
return ;
}
/*
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
*/
 
 
 
 
 
 
 
 
 
 

POJ 3436 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  6. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  7. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  8. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

  9. poj 3436 ACM Computer Factory 最大流+记录路径

    题目 题意: 每一个机器有一个物品最大工作数量,还有一个对什么物品进行加工,加工后的物品是什么样.给你无限多个初始都是000....的机器,你需要找出来经过这些机器操作后最多有多少成功的机器(111. ...

随机推荐

  1. java构造函数也可以用private开头

    private 构造函数一般用于Singleton模式,指的是整个应用只有本类的一个对象,一般这种类都有一个类似getInstance()的方法!下面是一个Singleton的例子:public cl ...

  2. 关于C#中的DateTime类型的技巧

    * datetime.now.tostring()方法默认的你是无法得到全部的时间的格式的,只能得到日期,得不到具体时间,如果要具体时间,就应该使用 datetime的tostring()重载,dat ...

  3. Java 6 Thread States and Life Cycle.

    Ref: Java 6 Thread States and Life Cycle This is an example of UML protocol state machine diagram sh ...

  4. SQL SERVER将指定表中的指定字段按照(,)逗号分隔

    不开心呀,早知道不跳了,一跳跳坑里来了. 使用方式: DECLARE @ConsigneeAddressId INT; SET @ConsigneeAddressId = 1; SELECT  * F ...

  5. 类 Array Arraylist List Hashtable Dictionary

    总结C# 集合类 Array Arraylist List Hashtable Dictionary Stack Queue  我们用的比较多的非泛型集合类主要有 ArrayList类 和 HashT ...

  6. maven项目下tomcat直接启动不了(LifecycleException)。报错如下截图

    经查,tomcat项目下的lib中没有jar包,发布的时候没有将jar包发布上去.这个问题在我的博客中以前遇到过.如何将maven的jar发布到项目中,我的博客里面有记载

  7. 40个DBA日常维护的SQL脚本--1113

    from itpub --1.查询碎片程度高的表--条件为什么block>100,因为一些很小的表,只有几行数据实际大小很小,但是block一次性分配就是5个(11g开始默认一次性分配1M的bl ...

  8. 1、大部分社交平台接口不支持https协议。

    参考文献来自:http://wiki.mob.com/ios9-%E5%AF%B9sharesdk%E7%9A%84%E5%BD%B1%E5%93%8D%EF%BC%88%E9%80%82%E9%85 ...

  9. JSP JS 日期控件的下载、使用及注意事项

    网上流行的时间日期控件比较多,个人觉得My97DatePicker的日期控件不错,值得推荐. 具体的使用过程如下: 1.下载My97DatePicker.rar或 My97DatePickerBeta ...

  10. slf4j与log4j

    推荐使用SLF4J(Simple Logging Facade for Java)作为日志的api,SLF4J是一个用于日志系统的简单Facade,允许最终用户在部署其应用时使用其所希望的日志系统. ...