Brackets

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1,i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6 思路:动态规划,设dp[i][j]表示从i到j这段子串匹配的最大长度,则状态转移方程分两种情况,1.若从i到j-1这些字符中没有一个能与j匹配,则 dp[i][j] = dp[i][j-1],这是显然的;2.若从i到j-1中有字符能与j匹配(可能不止一个,并设他们组成集合为A),则 dp[i][j] = max(dp[i][j],dp[i][k-1]+dp[k+1][j-1]+2)(k属于集合A),加2是因为一旦匹配成功一次长度就会增加2.
 #include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 111
using namespace std;
int dp[MAXN][MAXN];
char str[MAXN];
bool OK(int i,int j){return (str[i] == '(' && str[j] ==')') || (str[i] == '[' && str[j] == ']');}
int main(){
//freopen("in.cpp","r",stdin);
while(~scanf("%s",str) && strcmp(str,"end")){
memset(dp,,sizeof(dp));
int len = strlen(str);
for(int i = ;i < len;i ++){
for(int j = i-;j >= ;j--){
dp[j][i] = dp[j][i-];
for(int k = j;k < i;k ++)
if(OK(k,i)) dp[j][i] = max(dp[j][i],dp[j][k-] + dp[k+][i-]+);
}
}
printf("%d\n",dp[][len-]);
memset(str,,sizeof(str));
}
return ;
}
												

POJ -- 2955的更多相关文章

  1. poj 2955 Brackets dp简单题

    //poj 2955 //sep9 #include <iostream> using namespace std; char s[128]; int dp[128][128]; int ...

  2. poj 2955 Brackets

    题目链接:http://poj.org/problem?id=2955 思路:括号匹配问题,求出所给序列中最长的可以匹配的长度(中间可以存在不匹配的)例如[(])]有[()]符合条件,长度为4 dp[ ...

  3. POJ 2955 (区间DP)

    题目链接: http://poj.org/problem?id=2955 题目大意:括号匹配.对称的括号匹配数量+2.问最大匹配数. 解题思路: 看起来像个区间问题. DP边界:无.区间间隔为0时,默 ...

  4. (区间dp 或 记忆化搜素 )Brackets -- POJ -- 2955

    http://poj.org/problem?id=2955 Description We give the following inductive definition of a “regular ...

  5. POJ 2955 Brackets(括号匹配一)

    题目链接:http://poj.org/problem?id=2955 题目大意:给你一串字符串,求最大的括号匹配数. 解题思路: 设dp[i][j]是[i,j]的最大括号匹配对数. 则得到状态转移方 ...

  6. POJ 2955:Brackets(区间DP)

    http://poj.org/problem?id=2955 题意:给出一串字符,求括号匹配的数最多是多少. 思路:区间DP. 对于每个枚举的区间边界,如果两边可以配对成括号,那么dp[i][j] = ...

  7. POJ 2955 Brackets --最大括号匹配,区间DP经典题

    题意:给一段左右小.中括号串,求出这一串中最多有多少匹配的括号. 解法:此问题具有最优子结构,dp[i][j]表示i~j中最多匹配的括号,显然如果i,j是匹配的,那么dp[i][j] = dp[i+1 ...

  8. 区间DP poj 2955

    求最多有几个括号可以匹配 #include<stdio.h> #include<string.h> #include<algorithm> using namesp ...

  9. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  10. poj 2955 括号匹配 区间dp

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6033   Accepted: 3220 Descript ...

随机推荐

  1. spring学习笔记之spring框架本质

    Spring框架的本质是,开发者在Spring配置文件中使用XML元素进行配置,实际驱动Spring执行相应的代码: 使用<bean.../>元素,实际启动Spring执行无参或有参构造函 ...

  2. java新手笔记13 继承

    1.Person类 package com.yfs.javase; //可以有多个子类 public class Person { private String name;// 私有属性不能继承 pr ...

  3. 用 Python写 daemon

    转自 http://chowroc.blogspot.com/2007/05/python-how-to-write-daemon.html 最近用 Python 可能要写 daemon,找资料先看看 ...

  4. SQL Join(连接查询)

    1.连接查询分为: inner join(自然连接,自连接) Left join(左连接)/Left outer join(左外连接):效果一样 Right join(右连接)/Right outer ...

  5. [转] 使用maven运行java main的三种方式

    原文地址: http://blog.csdn.net/qbg19881206/article/details/19850857?utm_source=tuicool&utm_medium=re ...

  6. mysql中char与varchar的区别

    在建立数据库表结构的时候,为了给一个String类型的数据定义一个数据库的数据库类型,一般参考的都是char或者varchar,这两种选择有时候让人很纠结,今天想总结一下它们两者的区别,明确一下选择塔 ...

  7. 在ecshop商品详情页显示供货商

    好久没写文章了,隐约记得前几天有人问到这个问题:[如何在ecshop商品详情页面显示该商品的供货商?] 今天有时间整理下,分享给大家. 注:以下修改适用于ecshop2.7.2,其他版本未做测试. 1 ...

  8. java 各种排序算法

    各种排序算法的分析及java实现   排序一直以来都是让我很头疼的事,以前上<数据结构>打酱油去了,整个学期下来才勉强能写出个冒泡排序.由于下半年要准备工作了,也知道排序算法的重要性(据说 ...

  9. HTML5:一个拖拽网页元素的例子

    关键字:HTML5, Drag&Drop, JavaScript, CSS 运行环境:Chrome <!DOCTYPE html> <html> <head> ...

  10. 使用reinterpret_cast的危险

    关键字: c++ cast // Cast.cpp : Defines the entry point for the console application. // #include "s ...